Assignment 10
1. PowerPC Assembly Language

a. Using PowerPC assembly instructions, write code to store the integer value 25 in memory at address 0x000066B0.

b. Answer questions i. – iv. Each part is independent.

Consider the following memory dump and PowerPC registers. Assume that byte-ordering is big endian (big byte first, i.e., MSB at lower address) and memory addresses are 32 bits wide.

	Address

Memory Contents
30001FF8
25 24 5B 1A AC 57 9C 8D

30002000
00 FE 25 24 5B 1A EE 05

30002008
AC AE 81 83 45 67 89 25

30002010
01 23 55 3F AC CB F0 8D

	Register
Register Contents
R20

2000FF10

R21

00000004

R22

FFF00100

R23

30002008

R24

00008002

R25

30002000

“What is the result” means what registers/memory are affected and what are the values?

i. What is the result of the instruction:
lbz
r20, 3 (r23)

ii. What is the result of the instruction:
lhz
r21, -4 (r25)

iii. What is the result of the instruction:
addi
r22, r25, 18

iv. What is the result of the instruction:
sthx
r24, r21, r25

c. Given the following information and PowerPC assembly program fragment, fill in the blanks.

	Register
	Initial Value

	r1 (SP)
	0x00008000

	r3
	0x00000000

	r5
	0x00003000

	r8
	0x00000000

	r10
	0x000FFFFF

	Program Fragment
	
	After the instruction executes:

	
	
	
	

	
	addi r3,r3,4
	
	

	
	bl func1
	LR (0x00005000 (return address)

	
	b end
	
	

	
	
	
	

	func1:
	mflr r8
	
	

	
	addi SP, SP, -4
	SP = _______________
	

	
	stw r8, 4(SP)
	SP = _______________
	M[SP+4] = _______________

	
	stw r3, 0(r5)
	r5 = _______________
	M[r5+0] = _______________

	
	bl func2
	
	

	
	lwz r8, 4(SP)
	r8 = _______________
	

	
	addi SP, SP, 4
	
	

	
	mtlr r8
	
	

	
	blr
	
	

	
	
	
	

	func2:
	addi r3,r3,1
	
	

	
	stw r3,0(r10)
	
	

	
	blr
	
	

	
	
	
	

	end:
	
	
	

d. Suppose that you are creating a new simplified mnemonic for a decrement instruction:
decr rD, which decrements register rD, i.e., rD ((rD) - 1
The decr instruction is based on the addi instruction. Give the equivalent addi instruction.

2. Data Structures in Assembly

a. Consider the array declaration

T A[N];

for data type T and integer constant N. Let L be the size in bytes of data type T.

This declaration allocates a region of LN bytes in memory.

Let’s refer to the starting location of the array as address xA. The declaration sets up identifier A as a pointer to the beginning of the array; it has the value xA. Array element i is stored at address xA + Li.

For example, these declarations create arrays as follows.

char A[12];

short C[6];

	Array
	Element Size
	Total Size
	Start Address
	Element i Address

	A
	1
	12
	xA
	xA + i

	C
	2
	12
	xC
	xC + 2i

i. If (R20) = xA, give a PowerPC instruction for putting the value of A[10] into R30.

ii. If (R20) = xC, give a PowerPC instruction for putting the value of C[5] into R30.

iii. Based on the following declarations, complete the table.

short S[7];

short * T[3];

int V[8];

int * W[4];

	Array
	Element Size
	Total Size
	Start Address
	Element i Address

	S
	
	
	xS
	

	T
	
	
	xT
	

	V
	
	
	xV
	

	W
	
	
	xW
	

b. The C struct declaration creates a data type that groups objects of possibly different types into a single object. The different components of a structure are referenced by names. The implementation of a structure is similar to that of arrays. All of the elements of a structure are stored in a region in memory, and a pointer to a structure is the address of its first byte. The byte offset of each field is used to access structure elements. The offset is a displacement in base+displacement (indexed) addressing for load and store instructions.

Note: the struct data type constructor is the closest thing C provides to the objects of C++ and Java. The objects in C++ and Java are more elaborate than structures in C, in that they also associate a set of methods with an object. In C, we would simply write these as ordinary functions with the pointer to a structure passed in as a parameter.

Consider the following structure declaration:

struct rec {

int i;

int j;

int a[3];

int * p;

};

We could declare variable r of type struct rec and set its field values.

struct rec r;

r.i = 25;

r.j = r.i;

Since r is the address of the structure, the following statements perform the same field assignments. The alternative notation for dereferencing and field selection is ->.

struct rec * pr;

pr = r;

(*pr).i = 25;

pr->j = pr->i;

This structure contains four fields and uses a total of 24 bytes.

	Offset
	0
	4
	8
	
	
	20

	Contents
	i
	j
	a[0]
	a[1]
	a[2]
	p

The byte offsets are relative to the beginning of the structure. Let address xr be the starting location of the structure.

i. If (R20) = xr, give a PowerPC instruction for putting the value of r.j into R30.

ii. If (R20) = xr, give a PowerPC instruction for putting the value of r.a[1] into R30.

iii. Given the following declaration and alignment restriction, fill in the shaded cells in the tables.

struct S3 {

char c;

int i[2];

long v;

};

Alignment restriction:

Suppose that a k-byte primitive object must have an address that is a multiple of k. Many processors place restrictions on allowable addresses for the primitive data types, requiring that the address must be a multiple of k (typically 2, 4, or 8). For example, a short must be aligned to have its address be a multiple of 2. A long must be word-aligned, i.e., its address is a multiple of 4. A double must be double-word aligned, i.e., its address is a multiple of 8.

Notice also that a structure has some required alignment for its starting address to ensure that each element satisfies its alignment requirement. For example, a structure of type S3 must be word-aligned.

Type S3: Fill in the shaded cells.
	Offset
	0
	4
	
	Total Size

	Field
	c
	i
	v
	16 bytes

	Offset
	0
	1
	4
	8
	

	Contents
	c
	XXX
	i[0]
	
	v

where XXX denotes a 3-byte gap

Note: The gap is needed to satisfy the word alignment for field i. Moreover, the starting address of an S3 variable must be word-aligned, so that the field addresses are correctly aligned.

In addition, padding may need to be added to the end of the structure so that each element in an array of structures will satisfy its alignment requirement. For example, if field v in S3 is instead declared as type short, a total of 16 bytes would still be allocated (not 14 bytes): 2 bytes for v and 2 bytes of padding, so that the size in bytes is a multiple of 4.

iv. For each of the following structure declarations, determine the offset of each field, the total size of the structure, and the alignment requirement of the structure.
Example:

struct P1 { int i; char c; int j; char d; };

	Field:

i, c, j, d
	Total Size

(bytes)
	Structure Alignment

	Offset:

0, 4, 8, 12
	16
	4 bytes (word)

struct P2 { int i; char c; char d; int j; };

	Field:
	Total Size

(bytes)
	Structure Alignment

	Offset:
	
	

struct P3 { short w[3]; char c[3]; };

	Field:
	Total Size

(bytes)
	Structure Alignment

	Offset:
	
	

struct P4 { short w[3]; char * c[3]; };

	Field:
	Total Size

(bytes)
	Structure Alignment

	Offset:
	
	

3

