Counters

- Counter is a specialized register
- Goes through a prescribed sequence of states upon the application of input pulses
- Two categories based on different design styles:
 - Asynchronous counter / Ripple counter: Some FFs are triggered NOT by the common clock pulse, but by the transition in other FF outputs
 - Synchronous counter: All FFs are triggered by the common clock pulse

Overview

<table>
<thead>
<tr>
<th>Category</th>
<th>Direction</th>
<th>FF Type</th>
<th>Additional Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous</td>
<td>Up</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Asynchronous</td>
<td>Down</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Synchronous</td>
<td>Up</td>
<td>T</td>
<td>Enable</td>
</tr>
<tr>
<td>Synchronous</td>
<td>Up</td>
<td>D</td>
<td>Enable</td>
</tr>
<tr>
<td>Synchronous</td>
<td>Up</td>
<td>D</td>
<td>Enable / Parallel Load</td>
</tr>
<tr>
<td>Asyn / Syn</td>
<td>Up</td>
<td>T / D</td>
<td>Module-7</td>
</tr>
</tbody>
</table>

Asynchronous Up-Counter using T Flip-Flops

- For a 4-bit Up-Counter, the input T_i is defined as:
 - $T_0 = 1$
 - $T_1 = Q_0$
 - $T_2 = Q_0 \cdot Q_1$
 - $T_3 = Q_0 \cdot Q_1 \cdot Q_2$

Synchronous Up-Counter using T Flip-Flops

- For a 4-bit Up-Counter with Enable, the input T_i is defined as:
 - $T_0 = \text{ENABLE}$
 - $T_1 = Q_0 \cdot \text{ENABLE}$
 - $T_2 = Q_0 \cdot Q_1 \cdot \text{ENABLE}$
 - $T_3 = Q_0 \cdot Q_1 \cdot Q_2 \cdot \text{ENABLE}$
Asynchronous Down-Counter using T Flip-Flops

Synchronous Up-Counter with Enable using D FFs

Synchronous Up-Counter with Parallel Load

Modulo-7 Counter