Sequential Circuit and State Machine

- Combinational circuits
- output is simply dependent on the current input
- Sequential circuits
- output may depend on the input sequence
- The effect of the input sequence can be memorized as a state of the system
- So a sequential circuit is also called a State Machine
- Memory elements (usually D flop-flips) are used to store the state
- System state changes with input
- A different input sequence produces different final state and different output sequence

State Transition Diagram (or State Diagram)

- Example
- A very simple machine to remember which building I am at
- The only input is the clock signal
- The state machine is represented as a state transition diagram (or called state diagram) below
- One step (i.e., transition) can be taken whenever there is a clock signal

Counter state machine

- A counter counts
- Number of elements in counter determines how many different states we need
- For example, an eight-state counter can count eight steps

Current	Next
X Y Z	X Y Z
000	001
001	010
010	011
011	100
100	101
101	110
110	111
111	000

Another counter

- Counter need not have number of states that is equal to a power of 2
- Here is a five state counter
- Is it simpler?

Current	Next	
X Y Z	X Y Z	
000	001	$\mathrm{X}=$
001	010	
010	011	$\mathrm{Y}=$
011	100	
100	000	$\mathrm{Z}=$

State Machine with Explicit Inputs

- In a state transition diagram, state may change with time
- A clock signal represents passage of time
- Each time a clock arrives, state changes to next state
- Clock is an implicit input
- There may or may not be other explicit inputs
- For the previous example, let say we also have an explicit input i
- For the state transition diagram shown, i can be $\mathbf{0}$ or $\mathbf{1}$
- Next state depends on current state and the value of input i
- When the next state depends upon the inputs, the inputs are examined at the clock edges

Output of state machine

- Output of a state machine may depend on state, or state \& input:
- Mealy machine: Output depends on both current state and current input (i.e., depends on transition)
- Moore machine: Output depends on current state
- Thus we have two different circuits to implement
- 1. Decides what is the next state
- 2. Decides what is the output
- Both circuits are combinational
- States are remembered by memory elements - Usually D flips-flops are used to remember states

State Transition Table with Explicit Inputs

- State transition table will have two sets of inputs
- Current state variable and explicit input variables
- Total number of row in table is $\mathbf{2}^{(n+m)}$
- \mathbf{n} is number of variables representing states
- m is number of input variables

State Transition Diagram with Outputs

- Moore Machine. (For example, output 1 whenever in Coover)
- Mealy Machine: (For example, output 1 whenever walking between Coover and Durham)

Durham)

Overall structure of a State machine

Moore machine (outputs depend on current state, but not current inputs)

Mealy machine (outputs depend on both current state and current inputs)

Steps in designing a state machine

- Start writing a state transition diagram
- It has an initial state
- It has other states to keep track of various activities
- It has some transitions
- Generate a state transition table and a output table
- Write state transition table and output table in binary
- Needs state assignment, i.e., the code used for each state
- State assignment is a complex process
- For the time being assume straightforward combinations
- Derive canonical sum-of-product expressions
- You can simplify the expressions

Determining number of states

- Identify how many different things we need to keep track of
- This is critical to know
- Otherwise the number of states (and their meaning) may get out of hand very quickly
- This is different from what is the output of interest (in each state we may have some outputs)
- For example, if we are to process a sequence of input bits, depending on interest, the number of states may be different
- If we need to know how many 1's there are, we need states corresponding to the count
- If we need to know if we have even or odd number of 1's, we may need only two states

Example

- Design a state machine that will repeatedly display in binary values 1, 3, 5, and 7
- Solutions:
- How many states we need?
- What is the state transition diagram?
- What is the output in each state?
- What is the next state logic?
- Construct the truth tables with state variables
- Derive the next state logic and output logic
- Draw the circuits

Example (contd.)

- Next State and Output logic tables are

Cur State Xc Yc Zc			Next State			State			Output
				Yn	Zn		Y	c Z	abcdefg
0	0	0	0	0	1	0	0	0	0110111
0	0	1	0	1	0	0	0	1	1001111
0	1	0	0	1	1	0	1	0	0001110
0	1	1	1	0	0	0	1	1	0001110
1	0	0	0	0	0	1	0	0	1111110

Another Example for State Machine

- Design a state machine to display the characters in the string HELLO using a seven segment display
- How many states do we need?
- Five, one for each character
- In state SO (000) we display H
- In state S1 (001) we display E
- In state S2 (010) we display L
- In state S3 (011) we display L
- In state S4 (100) we display 0
- State transitions are

S0 -> S1
S1 -> S2
S2 -> S3
S3 -> S4
S4 -> S0

To Detect if \# of 1's in Input is Divisible by 3

- Design a state machine with 1 bit of input and 1 bit of output
- The output bit will be 1 whenever the number of bits in input sequence is divisible by 3
- How many states do we need?
- What are the meaning of the states?
- In state S0 (00), remainder = 0 (i.e., divisible by 3)
- In state S1 (01), remainder = 1
- In state S2 (10), remainder = 2
- Choose to design a Moore machine
- Output is 1 whenever in state So

State machines as sequence detector

- State machine by nature are ideally suited to track state and detect specific sequence of events
- For example, we may design specific machines to track certain pattern in an input sequence
- Examples:
- to count 1's in a sequence and produce an output if a specific situation occurs like 3rd one, or every 2nd one, or nth one
- to generate an output or stop if a specific pattern in the sequence (such as 011 or 0101 or 1111) is observed
- In each of these cases, it is to create a relationship between input and output sequence
- We will review input and output relations for such operations

Example input/output sequences

- n -th one detector, $\mathrm{n}=2$
_ Input: 00100111011001010101110001
- Output: 00000101001000010001010000
- n -th one detector, $\mathrm{n}=3$
- Input: 00100111011001010101110001
- Output: 00000010001000000100010000
- 011 pattern detector
- Input: 00100111011001010101110001
- Output: 00000010001000000000100000
- 1010 pattern detector
- Input: 00100111011001010101110001
- Output: 00000000000000001010000000

3-rd One Detector

- Use a Mealy machine design
- 3 states are enough
- Have a similar structure to the Moore machine to detect if \# of 1's in Input is Divisible by 3

- If Moore machine design is used, $\mathbf{4}$ states is needed

Design of a sequence detector for 011

- Four states and state transitions are shown in the figure
- Output: 1 for State S3, 0 for all others

Design of a sequence detector for 1010

- Four states and state transitions are shown in the figure
- Output: 1 for State S4, 0 for all others

| Current Input | Next
 State |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| State | |

Another example: a complex vending machine

- Vending Machine
- Collect money, deliver product and change
- Vending machine may get three inputs, n, d, q
- Inputs are nickel (5c), dime (10c), and quarter (25c)
- Only one coin input at a time
- Product cost is 40c
- Does not accept more than 50c (blocks the coin slot)
- Returns 5c or 10c back
- Exact change appreciated
- How many states?
- What are the output signals?

Design of Complex Vending Machine

- We are designing a Mealy state machine (i.e., output depends on both current state and inputs).
- Suppose we ask the machine to directly return the coin if it cannot accept an input coin.
- The following two-bit code is used:
- 00 -- no coin, 01 -- nickel, 10 -- dime, and 11 -- quarter
- Inputs: $I_{1} I_{2}$ which represent the coin inserted
- Outputs: $C_{1} C_{2} P$ where $C_{1} C_{2}$ represent the coin returned and P indicates whether to deliver produc
- States: S00, S05, S10, S15, S20, S25, S30, S35
- 3 bits are enough to encode the states
- Notice the names (they need not be S0, S1....)
- State assignment: S00-000, S05-001, S10-010, S15-011, S20-100, S25-101, S30-110, S35-111

State Diagram for Vending Machine

Algorithmic State Machine (ASM) Charts

- Another way to represent a state machine
- State diagrams are useful when the machine has only a few inputs and outputs
- ASM charts may be more convenient for larger machines

Example: Mealy Machine

