Introduction

Rapidly changing field:

— vacuum tube -> transistor -> IC -> VLSI (see section 1.4)

— memory capacity and processor speed is doubling every 1.5 years:
Things you’ll be learning:

— how computers work, a basic foundation

— how to analyze their performance (or how not to!)

— issues affecting design of modern processors (caches, pipelines)
Why learn this stuff?

— You want to design state-of-art system

— you want to call yourself a “computer scientist or engineer”

— you want to build software people use (need performance)

— you need to make a purchasing decision or offer “expert” advice

What is a computer?

« Components:
— input (mouse, keyboard)
— output (display, printer)
— memory (disk drives, DRAM, SRAM, CD)
— network

« Our primary focus:
— understanding performance
— the processor (datapath and control)
— implemented using millions of transistors
— impossible to understand by looking at each transistor
— we need an abstraction

Abstraction
st
« Delving into the depths friidivect
reveals more information e
b
« An abstraction omits unneeded detail, ()
helps us cope with complexity T
uis2, 354
i 83,5452
st oy
W s, 45)
S $16.08)
Eickt
What are some of the details that
appear in these familiar abstractions? 4
>

00000000101000010000000000011000
0000000100011100001100000700001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

What is Computer Architecture?

« A programmer’s view of machine
* What does it include?

* What is Computer Organization, Structure, and Function?

Instruction Set Architecture

A very important abstraction
— interface between hardware and low-level software
— standardizes instructions, machine language bit patterns, etc.
— advantage: different implementations of the same architecture

— disadvantage: sometimes prevents using new innovations
True or False: Binary compatibility is extraordinarily important?

Modern instruction set architectures:
— 80x86/Pentium/K6, PowerPC, DEC Alpha, MIPS, SPARC, HP

Historical Perspective

A View of Hardware/Software Hierarchy

« Hardware and software are layered
« Some functions can be moved back and forth
« System software is a collection of programs
- 08§, pilers are some p
— It makes job of individuals user easy [
« Application software programs
— Used by many users

View of Software

« Software means different things to different people

Saftware
Appheatmzs Hyaterma
wftware wftware

lix /I\
Campikers Operating Asserablers

wysterns

-2 as .

Virtual File VO device

ystem drivers

AN

Internal Structure of a Processor Chip

+ Major Components
— Instruction cache S T e
i poin
— Instruction Fetch Integer] datapath
. Memary | data
— Instruction Decode buffer | path
— Control/Microcode Dsta
— Register File cache
Renarvation stations
— Data path feantral)
— Data Cache
— /0 Unit
Reorder buffer
— Memory Buffer feantral)
— Advanced Units Inutruction
cache and
Branc] Fotch umit Instruction | Micromde
decodeo Teantrol)

Chip Manufacturing Process

Bl ingd Filunk wafers

T R,
20t 30 processing stepn

Patterned wafers

fome wafer)
oy
L)
agum., Dicer
‘au
&
daa
Ship 1o custeners

Historical Perspective

+ 1642 Pascal: Mechanical Computer

« 1671: Gottfried Leibniz ADD/SUB/MUL/DIV

+ 1801: Automatic Control of Weaving Process

« 1827 The Difference Engine by Charles Babbage

* 1936: Zuse Z1: electromechanical computers

* 1941: Zuse Z2

+ 1943: Zuse Z3

* 1944: Aiken: Ark 1 at Harvard

* 1942-45: ABC at lowa State (Atanasoff-Berry Computer)
« 1946: ENIAC: Eckert and Mauchley: Vacuum Tube

* 1945 EDVAC by von-Neumann machine, father of modern computing

8
Where we are headed
« Performance issues (Chapter 2) vocabulary and motivation
« A specific instruction set architecture (Chapter 3)
« Other instruction set example (From Outside)
« Arithmetic and how to build an ALU (Chapter 4)
« Constructing a pr to te our instructi (Chapter 5)
« Pipelining to improve performance (Chapter 6)
+ Memory: caches and virtual memory (Chapter 7)
« 1/O (Chapter 8)
Key to a good grade: attending classes, reading the book!
10
Difference Engine
« Based on computing differences, a finite n-th order polynomial can
be differentiated n times, which can be represented by a difference
« For example
* y=S8in(x)=x-x%3!
« To compute value of sin(x) at x0, x1, x2, x3, x4, x5, x6.... such that
difference in two consecutive values is small, we can calculate y0,
y1, y2, and y3 by hand and call them A%0, A%1, A%?2, and A’y3
« Then first order difference is Ay0 = y1-y0; A'y1 = y2-y1; Aly2 = y3-y2;
« Second order difference is A2y0 = Aly1 - Aly0 = y2-2y1+y0; and so on
« Third order difference is A%y0 = A%y1 - A2y0 = y3-3y2+3y1-y0
A%y0=0
« Using this we can recursively compute A3y1, A2y1, and A'y1, and A%1
*« Andsoon....
12

