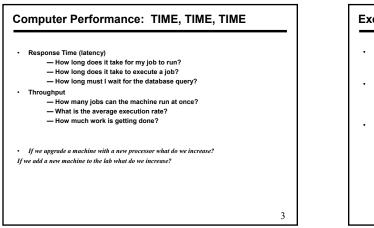
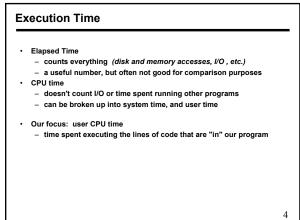
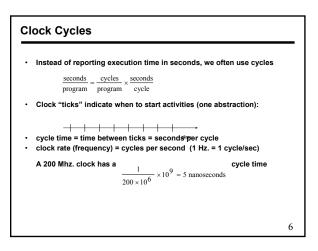
Performance

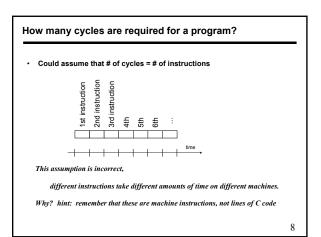

- · Measure, Report, and Summarize
- Make intelligent choices
- See through the marketing hype
- Key to understanding underlying organizational motivation

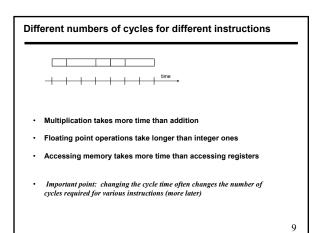
Why is some hardware better than others for different programs?

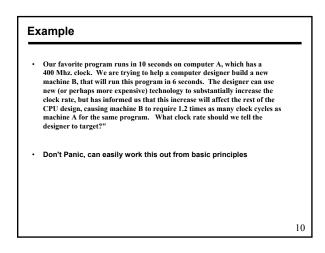

What factors of system performance are hardware related? (e.g., Do we need a new machine, or a new operating system?)

How does the machine's instruction set affect performance?


hich of these	airplanes	has the bes	st performar	nce?
Airplane	Passengers	Range (mi)	Speed (mph)	
Boeing 737-100	101	630	598	
Boeing 747	470	4150	610	
BAC/Sud Conco	rde 132	4000	1350	
Douglas DC-8-5	0 146	8720	544	
low much bigge	r is the 747 tha	an the Douglas	DC-8?	


1




Book's Definition of Performance For some program running on machine X, Performance_x = 1 / Execution time_x "X is n times faster than Y" Performance_x / Performance_y = n Problem: machine A runs a program in 20 seconds machine B runs the same program in 25 seconds

How to Improve Performance	
$\frac{\text{seconds}}{\text{program}} = \frac{\text{cycles}}{\text{program}} \times \frac{\text{seconds}}{\text{cycle}}$	
So, to improve performance (everything else being equal) you can either	
the # of required cycles for a program, orthe clock cycle time or, said another way,	
the clock rate.	
	7

Now that we understand cycles

- · A given program will require
 - some number of instructions (machine instructions)
 - some number of cycles
 - some number of seconds
- · We have a vocabulary that relates these quantities:
 - cycle time (seconds per cycle)
 - clock rate (cycles per second)
 - CPI (cycles per instruction)
 - a floating point intensive application might have a higher CPI – MIPS (millions of instructions per second)
 - this would be higher for a program using simple instructions

11

Performance Performance is determined by execution time

- Do any of the other variables equal performance?
- # of cvcles to execute program?
- # of instructions in program?
- # of cycles per second?
- average # of cycles per instruction?
- average # of instructions per second?
- _____per account of the second is
- Common pitfall: thinking one of the variables is indicative of performance when it really isn't.

CPI Example

Suppose we have two implementations of the same instruction set architecture (ISA).

For some program,

Machine A has a clock cycle time of 10 ns. and a CPI of 2.0 Machine B has a clock cycle time of 20 ns. and a CPI of 1.2

What machine is faster for this program, and by how much?

If two machines have the same ISA which of our quantities (e.g., clock rate, CPI, execution time, # of instructions, MIPS) will always be identical?

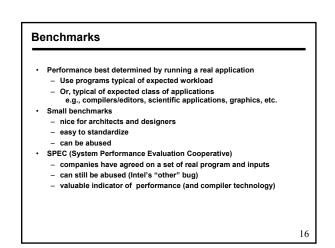
13

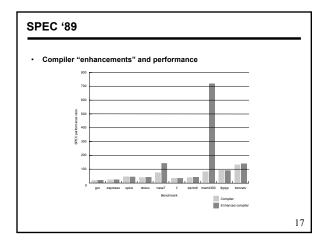
of Instructions Example

 A compiler designer is trying to decide between two code sequences for a particular machine. Based on the hardware implementation, there are three different classes of instructions: Class A, Class B, and Class C, and they require one, two, and three cycles (respectively).
 The first code sequence has 5 instructions: 2 of A, 1 of B, and 2 of C The second sequence has 6 instructions: 4 of A, 1 of B, and 1 of C.
 Which sequence will be faster? How much? What is the CPI for each sequence?

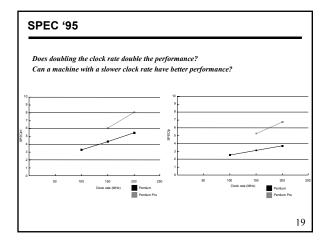
14

MIPS example


 Two different compilers are being tested for a 100 MHz. machine with three different classes of instructions: Class A, Class B, and Class C, which require one, two, and three cycles (respectively). Both compilers are used to produce code for a large piece of software.


The first compiler's code uses 5 million Class A instructions, 1 million Class B instructions, and 1 million Class C instructions.

The second compiler's code uses 10 million Class A instructions, 1 million Class B instructions, and 1 million Class C instructions.

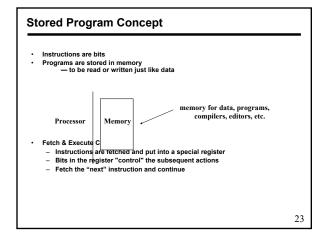

- · Which sequence will be faster according to MIPS?
- Which sequence will be faster according to execution time?

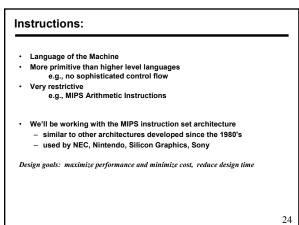
15

Benchmark	Description
0	Artificial intelligence: plays the game of Go
n88ksim	Motorola 88k chip simulator: runs test program
100	The Gnu C compiler generating SPARC code
compress	Compresses and decompresses file in memory
6	Lisp interpreter
ipeg	Graphic compression and decompression
perl	Manipulates strings and prime numbers in the special-purpose programming language Pe
vortex	A database program
omcatv	A mesh generation program
swim	Shallow water model with 513 x 513 grid
su2cor	quantum physics; Monte Carlo simulation
hydro2d	Astrophysics; Hydrodynamic Naiver Stokes equations
marid	Multigrid solver in 3-D potential field
applu	Parabolic/elliptic partial differential equations
trub3d	Simulates isotropic, homogeneous turbulence in a cube
apsi	Solves problems regarding temperature, wind velocity, and distribution of pollutant
fpppp	Quantum chemistry
wave5	Plasma physics: electromagnetic particle simulation

Execution Time After Improvement =

Execution Time Unaffected +(Execution Time Affected / Amount of Improvement)


Example:


"Suppose a program runs in 100 seconds on a machine, with multiply responsible for 80 seconds of this time. How much do we have to improve the speed of multiplication if we want the program to run 4 times faster?"

How about making it 5 times faster?

· Principle: Make the common case fast

Example Remember Suppose we enhance a machine making all floating-point instructions run . Performance is specific to a particular program/s five times faster. If the execution time of some benchmark before the - Total execution time is a consistent summary of performance floating-point enhancement is 10 seconds, what will the speedup be if half of the 10 seconds is spent executing floating-point instructions? · For a given architecture performance increases come from: - increases in clock rate (without adverse CPI affects) We are looking for a benchmark to show off the new floating-point unit . - improvements in processor organization that lower CPI described above, and want the overall benchmark to show a speedup of 3. - compiler enhancements that lower CPI and/or instruction count One benchmark we are considering runs for 100 seconds with the old floating-point hardware. How much of the execution time would floatingpoint instructions have to account for in this program in order to yield our · Pitfall: expecting improvement in one aspect of a machine's desired speedup on this benchmark? performance to affect the total performance · You should not always believe everything you read! Read carefully! (see newspaper articles, e.g., Exercise 2.37) 21 22

