
1

• Instructions are bits
• Programs are stored in memory

— to be read or written just like data

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory

memory for data, programs,
compilers, editors, etc.

Stored Program Concept

2

Instructions:

• Language of the Machine
• More primitive than higher level languages

e.g., no sophisticated control flow
• Very restrictive

e.g., MIPS Arithmetic Instructions

• We’ll be working with the MIPS instruction set architecture
– similar to other architectures developed since the 1980's
– used by NEC, Nintendo, Silicon Graphics, Sony

Design goals: maximize performance and minimize cost, reduce design time

3

Architecture Specification

• Data types:
– bit, byte, bit field, signed/unsigned integers logical, floating point,

character
• Operations:

– data movement, arithmetic, logical, shift/rotate, conversion,
input/output, control, and system calls

• # of operands:
– 3, 2, 1, or 0 operands

• Registers:
– integer, floating point, control

• Instruction representation as bit strings

4

Characteristics of Instruction Set

• Complete
– Can be used for a variety of application

• Efficient
– Useful in code generation

• Regular
– Expected instruction should exist

• Compatible
– Programs written for previous versions of machines need it

• Primitive
– Basic operations

• Simple
– Easy to implement

• Smaller
– Implementation

5

Example of multiple operands

• Instructions may have 3, 2, 1, or 0 operands
• Number of operands may affect instruction length
• Operand order is fixed (destination first, but need not that way)

add $s0, $s1, $s2 ; Add $s2 and $s1 and store result in $s0

 add $s0, $s1 ; Add $s1 and $s0 and store result in $s0

 add $s0 ; Add contents of a fixed location to $s0

 add ; Add two fixed locations and store result

6

Where operands are stored

• Memory locations
– Instruction include address of location

• Registers
– Instruction include register number

• Stack location
– Instruction opcode implies that the operand is in stack

• Fixed register
– Like accumulator, or depends on inst
– Hi and Lo register in MIPS

• Fixed location
– Default operands like interrupt vectors

7

MIPS arithmetic

• All instructions have 3 operands
• Operand order is fixed (destination first)

Example:

C code: A = B + C
MIPS code: add $s0, $s1, $s2

(associated with variables by compiler)

8

MIPS arithmetic

• Design Principle: simplicity favors regularity. Why?
• Of course this complicates some things...

C code: A = B + C + D;
E = F - A;

MIPS code: add $t0, $s1, $s2
add $s0, $t0, $s3
sub $s4, $s5, $s0

• Operands must be registers, only 32 registers provided
• Design Principle: smaller is faster. Why?

– More register will slow register file down.

9

Registers vs. Memory

Processor I/O

Control

Datapath

Memory

Input

Output

• Arithmetic instructions operands must be registers,
— only 32 registers provided

• Compiler associates variables with registers
• What about programs with lots of variables

10

Memory Organization

• Viewed as a large, single-dimension array, with an address.
• A memory address is an index into the array
• "Byte addressing" means that the index points to a byte of memory.

0
1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

11

Memory Organization

• Bytes are nice, but most data items use larger "words"
• For MIPS, a word is 32 bits or 4 bytes.

• 232 bytes with byte addresses from 0 to 232-1
• 230 words with byte addresses 0, 4, 8, ... 232-4
• Words are aligned

i.e., what are the least 2 significant bits of a word address?

0
4
8
12
...

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

12

Addressing within a word

• Each word has four bytes
• Which byte is first and which is last
• Two Choices

– Least significant byte is byte “0” -> Little Endian
– Most significant byte is byte “0” -> Big Endian

...

0
4
8
12

0 1 2 3

4 5 6 7

8 9 10 11

……………….

...

0
4
8
12

3 2 1 0

7 6 5 4

11 10 9 8

……………….

13

Instructions

• Load and store instructions
• Example:

C code: A[8] = h + A[8];

MIPS code: lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 32($s3)

• Store word has destination last
• Remember arithmetic operands are registers, not memory!

14

Addressing

• Memory address for load and store has two parts
– A register whose content are known
– An offset stored in 16 bits

• The offset can be positive or negative
– It is written in terms of number of bytes
– It is but in instruction in terms of number of words
– 32 byte offset is written as 32 but stored as 8

• Address is content of register + offset
• All address has both these components
• If no register needs to be used then use register 0

– Register 0 always stores value 0
• If no offset, then offset is 0

15

Our First Example

• Can we figure out the code?

swap(int v[], int k);
{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

} swap:
muli $2, $5, 4
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

16

So far we’ve learned:

• MIPS
— loading words but addressing bytes
— arithmetic on registers only

• Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

17

• Instructions, like registers and words of data, are also 32 bits long
– Example: add $t0, $s1, $s2
– registers have numbers, $t0=9, $s1=17, $s2=18

• Instruction Format:

000000 10001 10010 01000 00000 100000
op rs rt rd shamt funct

• Can you guess what the field names stand for?

Machine Language

18

• Consider the load-word and store-word instructions,
– What would the regularity principle have us do?
– New principle: Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructions
– other format was R-type for register

• Example: lw $t0, 32($s2)

35 18 9 32

op rs rt 16 bit number

• Where's the compromise?

Machine Language

19

• Decision making instructions
– alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

• Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label:

Control

20

• A simple conditional execution
• Depending on i==j or i!=j, result is different

Conditional Execution

21

• MIPS unconditional branch instructions:
j label

• Example:
f, g, and h are in registers $s3, $s4, and $s5

if (i!=j) beq $s4, $s5, Lab1

f=g-h; sub $s3, $s4, $s5
else j exit

f=g+h; Lab1: add $s3, $s4, $s5
exit: ...

• Can you build a simple for loop?

Instruction Sequencing

22

So far:

• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Next instr. is at Label if $s4 ° $s5
beq $s4,$s5,L Next instr. is at Label if $s4 = $s5
j Label Next instr. is at Label

• Formats:

op rs rt rd shamt funct
op rs rt 16 bit address
op 26 bit address

R
I
J

23

• We have: beq, bne, what about Branch-if-less-than?
• New instruction:

if $s1 < $s2 then
$t0 = 1

slt $t0, $s1, $s2 else
$t0 = 0

• Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

Control Flow

24

• Small constants are used quite frequently (50% of operands)
e.g., A = A + 5;

B = B + 1;
C = C - 18;

• Solutions? Why not?
– put 'typical constants' in memory and load them.
– create hard-wired registers (like $zero) for constants like one.

• MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

• How do we make this work?

Constants

25

• Things we are not going to cover
support for procedures
linkers, loaders, memory layout
stacks, frames, recursion
manipulating strings and pointers
interrupts and exceptions
system calls and conventions

• Some of these we'll talk about later
• We've focused on architectural issues

– basics of MIPS assembly language and machine code
– we’ll build a processor to execute these instructions.

Other Issues

26

• simple instructions all 32 bits wide
• very structured, no unnecessary baggage
• only three instruction formats

• rely on compiler to achieve performance
— what are the compiler's goals?

• help compiler where we can

op rs rt rd shamt funct
op rs rt 16 bit address
op 26 bit address

R
I
J

Overview of MIPS

27

Various Addressing Modes

28

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 ° $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label

• Formats:

• Addresses are not 32 bits
— How do we handle this with load and store instructions?

op rs rt 16 bit address
op 26 bit address

I
J

Addresses in Branches and Jumps

29

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4°$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC
– address boundaries of 256 MB

op rs rt 16 bit addressI

Addresses in Branches

30

To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

