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Other Issues

• support for procedures (Refer to section 3.6), stacks, frames, recursion 
• manipulating strings and pointers 
• linkers, loaders, memory layout 
• Interrupts, exceptions, system calls and conventions
• Register use convention

Name Register number Usage
$zero 0 the constant value 0
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address
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• Register $29 is used as stack pointer
• Stack grows from high address to low address
• Stack pointer should point to the last filled address
• Once entries are removed, stack pointer should be adjusted

Stack Manipulation
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• Stores the last address for the last frame
• When completing a subroutine, frame address can be used as the 

starting stack pointer value 

Frame Pointer
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• We'd like to be able to load a 32 bit constant into a register
• Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

• Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000
0000000000000000 1010101010101010

1010101010101010 1010101010101010
ori

1010101010101010 0000000000000000

filled with zeros

How about larger constants?
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• Design alternative:
– provide more powerful operations
– goal is to reduce number of instructions executed
– danger is a slower cycle time and/or a higher CPI

• Sometimes referred to as “RISC vs. CISC”
– virtually all new instruction sets since 1982 have been RISC
– VAX:  minimize code size, make assembly language easy

instructions from 1 to 54 bytes long!

• We’ll look at PowerPC and 80x86

Alternative Architectures
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PowerPC

• Indexed addressing
– example:       lw $t1,$a0+$s3  #$t1=Memory[$a0+$s3]
– What do we have to do in MIPS? 

• Update addressing
– update a register as part of load (for marching through arrays)
– example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4
– What do we have to do in MIPS?

• Others:
– load multiple/store multiple
– a special counter register  “bc Loop”  

decrement counter, if not 0 goto loop
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80x86

• 1978:  The Intel 8086 is announced (16 bit architecture)
• 1980:  The 8087 floating point coprocessor is added
• 1982:  The 80286 increases address space to 24 bits, +instructions
• 1985:  The 80386 extends to 32 bits, new addressing modes
• 1989-1995:  The 80486, Pentium, Pentium Pro add a few  instructions

(mostly designed for higher performance)
• 1997:  MMX is added

“This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love” 
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A dominant architecture:  80x86

• Complexity:
– Instructions from 1 to 17 bytes long
– one operand must act as both a source and destination
– one operand can come from memory
– complex addressing modes

e.g., “base or scaled index with 8 or 32 bit displacement”
• Saving grace:

– the most frequently used instructions are not too difficult to build
– compilers avoid the portions of the architecture that are slow

“what the 80x86 lacks in style is made up in quantity, 
making it beautiful from the right perspective”
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Registers in 80xY86 Architecture 
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Examples of non- arithmetic instructions
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Instruction Encoding

12

• Instruction complexity is only one variable
– lower instruction count vs. higher CPI / lower clock rate

• Design Principles:
– simplicity favors regularity
– smaller is faster
– good design demands compromise
– make the common case fast

• Instruction set architecture
– a very important abstraction indeed!

Summary
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Arithmetic

• Where we've been:
– Performance (seconds, cycles, instructions)
– Abstractions:

Instruction Set Architecture
Assembly Language and Machine Language

• What's up ahead:
– Implementing the Architecture

32

32

32

operation

result

a

b

ALU
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• Bits are just bits (no inherent meaning)
— conventions define relationship between bits and numbers

• Binary numbers (base 2)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...
decimal:  0...2n-1

• Of course it gets more complicated:
numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no MIPS subi instruction; addi can add a negative number)

• How do we  represent negative numbers?
i.e., which bit patterns will represent which numbers?

Numbers
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• Sign Magnitude:         One's Complement     Two's Complement
000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = -0 100 = -3 100 = -4
101 = -1 101 = -2 101 = -3
110 = -2 110 = -1 110 = -2
111 = -3 111 = -0 111 = -1

• Issues:  balance, number of zeros, ease of operations
• Which one is best?  Why? 

Possible Representations
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• 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

maxint

minint

MIPS
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• Negating a two's complement number:  invert all bits and add 1

– remember:  “negate” and “invert” are quite different!

• Converting n bit numbers into numbers with more than n bits:

– MIPS 16 bit immediate gets converted to 32 bits for arithmetic

– copy the most significant bit (the sign bit) into the other bits
0010  -> 0000 0010
1010  -> 1111 1010

– "sign extension"   (lbu vs.  lb)

Two's Complement Operations
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• Just like in grade school  (carry/borrow 1s)
0111 0111 0110

+ 0110 - 0110 - 0101

• Two's complement operations easy
– subtraction using addition of negative numbers

0111
+ 1010

• Overflow  (result too large for finite computer word):
– e.g.,  adding two n-bit numbers does not yield an n-bit number

0111
+ 0001 note that overflow term is somewhat misleading,
1000 it does not mean a carry “overflowed”

Addition & Subtraction
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• Takes three input bits and generates two output bits
• Multiple bits can be cascaded

One- Bit Adder
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• A  B  CI   CO S
• 0   0   0     0    0
• 0   0   1     0    1
• 0   1   0     0    1                C = A.B + A.CI+ B.CI
• 0   1   1     1    0
• 1   0   0     0    1                 S = A.B.CI + A’.B’.CI+A’.B.CI’+A.B’.CI’
• 1   0   1     1    0
• 1   1   0     1    0
• 1   1   1     1    1

Adder Boolean Algebra
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• No overflow when adding a positive and a negative number
• No overflow when signs are the same for subtraction
• Overflow occurs when the value affects the sign:

– overflow when adding two positives yields a negative 
– or, adding two negatives gives a positive
– or, subtract a negative from a positive and get a negative
– or, subtract a positive from a negative and get a positive

• Consider the operations A + B, and A – B
– Can overflow occur if B is 0 ?
– Can overflow occur if A is 0 ?

Detecting Overflow
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• An exception (interrupt) occurs
– Control jumps to predefined address for exception
– Interrupted address is saved for possible resumption

• Details based on software system / language
– example:  flight control vs. homework assignment

• Don't always want to detect overflow
— new MIPS instructions:  addu, addiu, subu

note:   addiu still sign-extends!
note:   sltu,  sltiu for unsigned comparisons

Effects of Overflow
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• A  B  C       D   E    F
• 0   0   0       0    0    0
• 0   0   1       1    0    0
• 0   1   0       1    0    0      D = A + B + C    
• 0   1   1       1    1    0
• 1   0   0       1    0    0      E = A’.B.C + A.B’.C + A.B.C’
• 1   0   1       1    1    0
• 1   1   0       1    1    0      F = A.B.C
• 1   1   1       1    0    1

Real Design
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• Let's build an ALU to support the andi and ori instructions
– we'll just build a 1 bit ALU, and use 32 of them

• Possible Implementation (sum-of-products):

b

a

operation

result

op a b res

An ALU (arithmetic logic unit)
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• Not easy to decide the “best” way to build something
– Don't want too many inputs to a single gate
– Don’t want to have to go through too many gates
– for our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition:

• How could we build a 1-bit ALU for add, and, and or?
• How could we build a 32-bit ALU?

Different Implementations

cout = a b + a cin + b cinsum = a xor b xor cinSum

CarryIn

CarryOut

a

b
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Building a 32 bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

R e su lt31
a3 1

b3 1

R e su lt0

C arryIn

a0

b0

R e su lt1
a1

b1

R e su lt2
a2

b2

O pe rat io n

A LU 0

C arry In

C arryO u t

A LU 1

C arry In

C arryO u t

A LU 2

C arry In

C arryO u t

A LU 3 1

C arry In
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• Two's complement approach:  just negate b and add.
• How do we negate?

• A very clever solution:

What about subtraction  (a – b)  ?

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b
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• Need to support the set-on-less-than instruction (slt)

– remember:  slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwise

– use subtraction:  (a-b) < 0 implies a < b

• Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction:  (a-b) = 0 implies a = b

Tailoring the ALU to the MIPS
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Supporting slt

• Can we figure out the idea?
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Test for equality

• Notice control lines:

000 = and
001 = or
010 = add
110 = subtract
111 = slt

•Note:  zero is a 1 when the result is zero!

Set
a31

0

Result0a0

Result1a1

0

Result2a2

0

Operation

b31

b0

b1

b2

Result31

Overflow

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn


