
1

• A Ripple carry ALU
• Two bits decide operation

– Add/Sub
– AND
– OR
– LESS

• 1 bit decide add/sub operation
• A carry in bit
• Bit 31 generates overflow and set bit

A 32- bit ALU

2

• Is a 32-bit ALU as fast as a 1-bit ALU?
• Is there more than one way to do addition?

– two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0
c2 = b1c1 + a1c1 + a1b1 c2 =
c3 = b2c2 + a2c2 + a2b2 c3 =
c4 = b3c3 + a3c3 + a3b3 c4 =

Not feasible! Why?

Problem: ripple carry adder is slow

3

• An approach in-between our two extremes
• Motivation:

– If we didn't know the value of carry-in, what could we do?
– When would we always generate a carry? gi = ai bi
– When would we propagate the carry? pi = ai + bi

• Did we get rid of the ripple?

c1 = g0 + p0c0
c2 = g1 + p1c1 c2 = g1 + p1g0 + p1p0c0
c3 = g2 + p2c2 c3 = g2 + p2g1 + p2p1g0 + p2p1p0c0
c4 = g3 + p3c3 c4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

Feasible! Why?

Carry- look- ahead adder

4

• Generate g and p term for each
bit

• Use g’s, p’s and carry in to
generate all C’s

• Also use them to generate block
G and P

• CLA principle can be used
recursively

A 4- bit carry look- ahead adder

5

• A 16 bit adder uses four 4-bit
adders

• It takes block g and p terms and cin
to generate block carry bits out

• Block carries are used to generate
bit carries

– could use ripple carry of 4-bit
CLA adders

– Better: use the CLA principle
again!

Use principle to build bigger adders
CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0�
b0�
a1�
b1�
a2�
b2�
a3�
b3

a4�
b4�
a5�
b5�
a6�
b6�
a7�
b7

a8�
b8�
a9�
b9�

a10�
b10�
a11�
b11

a12�
b12�
a13�
b13�
a14�
b14�
a15�
b15

Carry-lookahead unit

6

• 4-Bit case
– Generation of g and p: 1 gate delay
– Generation of carries (and G and P): 2 more gate delay
– Generation of sum: 1 more gate delay

• 16-Bit case
– Generation of g and p: 1 gate delay
– Generation of block G and P: 2 more gate delay
– Generation of block carries: 2 more gate delay
– Generation of bit carries: 2 more gate delay
– Generation of sum: 1 more gate delay

• 64-Bit case
– 12 gate delays

Delays in carry look- ahead adders

7

• More complicated than addition
– accomplished via shifting and addition

• More time and more area
• Let's look at 3 versions based on grade school algorithm

01010010 (multiplicand)
x01101101 (multiplier)

• Negative numbers: convert and multiply
• Use other better techniques like Booth’s encoding

Multiplication

8

 01010010 (multiplicand)

 x01101101 (multiplier)
00000000

 01010010 x1
 01010010
 000000000 x0
 001010010
 0101001000 x1
 0110011010
 01010010000 x1
 10000101010
 000000000000 x0
 010000101010
 0101001000000 x1
 0111001101010
 01010010000000 x1
 10001011101010
 000000000000000 x0
 0010001011101010

Multiplication

 01010010 (multiplicand)

 x01101101 (multiplier)
00000000

 01010010 x1
 01010010
 000000000 x0
 001010010
 0101001000 x1
 0110011010
 01010010000 x1
 10000101010
 000000000000 x0
 010000101010
 0101001000000 x1
 0111001101010
 01010010000000 x1
 10001011101010
 000000000000000 x0
 0010001011101010

9

Multiplication: Implementation

Done

1. Test�
Multiplier0

1a. Add multiplicand to product and�
place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

64-bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits

10

Second Version

Multiplier
Shift right

Write

32 bits

64 bits

32 bits

Shift right

Multiplicand

32-bit ALU

Product Control test

Done

1. Test�
Multiplier0

1a. Add multiplicand to the left half of�
the product and place the result in�
the left half of the Product register

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

11

Final Version

Control�
testWrite

32 bits

64 bits

Shift rightProduct

Multiplicand

32-bit ALU

Done

1. Test�
Product0

1a. Add multiplicand to the left half of�
the product and place the result in�
the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No: < 32 repetitions

Yes: 32 repetitions

12

Multiplication Example

Orignal algorithmItera-
tion

multi-
plicand Step Product

0 0010 Initial values 0000 0110

0010 1:0 ⇒ no operation 0000 0110
1

0010 2: Shift right Product 0000 0011

0010 1a:1⇒ prod = Prod + Mcand 0010 00112

0010 2: Shift right Product 0001 0001

0010 1a:1⇒ prod = Prod + Mcand 0011 00013

0010 2: Shift right Product 0001 1000

0010 1:0 ⇒ no operation 0001 10004

0010 2: Shift right Product 0000 1100

13

• Let Multiplier be Q[n-1:0], multiplicand be M[n-1:0]
• Let F = 0 (shift flag)
• Let result A[n-1:0] = 0….00
• For n-1 steps do

– A[n-1:0] = A[n-1:0] + M[n-1:0] x Q[0] /* add partial product */
– F<= F .or. (M[n-1] .and. Q[0]) /* determine shift bit */
– Shift A and Q with F, i.e.,
– A[n-2:0] = A[n-1:1]; A[n-1]=F; Q[n-1]=A[0]; Q[n-2:0]=Q[n-1:1]

• Do the correction step
– A[n-1:0] = A[n-1:0] - M[n-1:0] x Q[0] /* subtract partial product */
– Shift A and Q while retaining A[n-1]
– This works in all cases excepts when both operands are 10..00

Signed Multiplication

14

• Numbers can be represented using three symbols, 1, 0, and -1
• Let us consider -1 in 8 bits

– One representation is 1 1 1 1 1 1 1 1
– Another possible one 0 0 0 0 0 0 0 -1

• Another example +14
– One representation is 0 0 0 0 1 1 1 0
– Another possible one 0 0 0 1 0 0 -1 0

• We do not explicitly store the sequence
• Look for transition from previous bit to next bit

– 0 to 0 is 0; 0 to 1 is -1; 1 to 1 is 0; and 1 to 0 is 1
• Multiplication by 1, 0, and -1 can be easily done
• Add all partial results to get the final answer

Booth’s Encoding

15

• Convert a binary string in Booth’s encoded string
• Multiply by two bits at a time
• For n bit by n-bit multiplication, n/2 partial product
• Partial products are signed and obtained by multiplying the

multiplicand by 0, +1, -1, +2, and -2 (all achieved by shift)
• Add partial products to obtain the final result
• Example, multiply 0111 (+7) by 1010 (-6)
• Booths encoding of 1010 is -1 +1 -1 0
• With 2-bit groupings, multiplication needs to be carried by -1 and -2
•

1 1 1 1 0 0 1 0 (multiplication by -2)
1 1 1 0 0 1 0 0 (multiplication by -1 and shift by 2 positions)

• Add the two partial products to get 11010110 (-42) as result

Using Booth’s Encoding for Multiplication

16

Booth’s algorithm (Neg. multiplier)

Booth’s algorithmItera-
tion

multi-
plicand Step Product

0 0010 Initial values 0000 1101 0

0010 1c: 10⇒ prod = Prod - Mcand 1110 1101 0
1

0010 2: Shift right Product 1111 0110 1

0010 1b: 01⇒ prod = Prod + Mcand 0001 0110 12

0010 2: Shift right Product 0000 1011 0

0010 1c: 10⇒ prod = Prod - Mcand 1110 1011 03

0010 2: Shift right Product 1111 0101 1

0010 1d: 11 ⇒ no operation 1111 0101 14

0010 2: Shift right Product 1111 1010 1

17

• Consider adding six set of numbers (4 bits each in the example)
• The numbers are 1001, 0110, 1111, 0111, 1010, 0110 (all positive)
• One way is to add them pair wise, getting three results, and then

adding them again
 1001 1111 1010 01111 100101
 0110 0111 0110 10110 10000
 01111 10110 10000 100101 110101

• Other method is add them three at a time by saving carry
 1001 0111 00000 010101 001101
 0110 1010 11110 010100 101000
 1111 0110 01011 001100 110101
 00000 01011 010101 001101 SUM
 11110 01100 010100 101000 CARRY

Carry- Save Addition

18

• n-bit carry-save adder take 1FA time for any n
• For n x n bit multiplication, n or n/2 (for 2 bit at time Booth’s

encoding) partial products can be generated
• For n partial products n/3 n-bit carry save adders can be used
• This yields 2n/3 partial results
• Repeat this operation until only two partial results are remaining
• Add them using an appropriate size adder to obtain 2n bit result
• For n=32, you need 30 carry save adders in eight stages taking 8T

time where T is time for one-bit full adder
• Then you need one carry-propagate or carry-look-ahead adder

Carry- Save Addition for Multiplication

19

• Even more complicated
– can be accomplished via shifting and addition/subtraction

• More time and more area
• We will look at 3 versions based on grade school algorithm

0011 | 0010 0010 (Dividend)

• Negative numbers: Even more difficult
• There are better techniques, we won’t look at them

Division

20

Division, First Version

21

Division, Second Version

22

Division, Final Version

23

Restoring Division

D ivide algorithmIteration D ivisor
Step R em ainder

0010 Initial values 0000 01110
0010 Shift Rem left 1 0000 1110
0010 2: R em = Rem - D iv 1110 1110

1 0010 3b: R em < 0 ⇒ + D iv, sll R , R 0 = 0 0001 1100

0010 2: R em = Rem - D iv 1111 11002

0010 3b: R em < 0 ⇒ + D iv, sll R , R 0 = 0 0011 1000

0010 2: R em = Rem - D iv 0001 10003

0010 3a: Rem ≥ 0 ⇒ sll R , R0 = 1 0011 0001

0010 2: R em = Rem - D iv 0001 00014

0010 3a: Rem ≥ 0 ⇒ sll R , R0 = 1 0010 0011

D one 0010 shift left half of Rem right 1 0001 0011

24

Non- Restoring Division
Divide algorithmIteration Divisor

Step Remainder
0 0010 Initial values 0000 1110

0010 1: Rem = Rem - Div 1110 1110

0010 2b: Rem < 0 ⇒,sll R, R0 = 0 1101 11001

0010 3b: Rem = Rem + Div 1111 1100
0010 2b: Rem < 0 ⇒ sll R, R0 = 0 1111 10002

0010 3b: Rem = Rem + Div 0001 1000

0010 2a: Rem > 0 ⇒ sll R, R0 = 1 0011 00013

0010 3a: Rem = Rem - Div 0001 0001

4 0010 2a: Rem > 0 ⇒ sll R, R0 = 1 0010 0011

Done 0010 shift left half of Rem right 1 0001 0011

25

Floating Point (a brief look)

• We need a way to represent
– numbers with fractions, e.g., 3.1416
– very small numbers, e.g., .000000001
– very large numbers, e.g., 3.15576 × 109

• Representation:
– sign, exponent, significand: (–1)sign × significand × 2exponent

– more bits for significand gives more accuracy
– more bits for exponent increases range

• IEEE 754 floating point standard:
– single precision: 8 bit exponent, 23 bit significand
– double precision: 11 bit exponent, 52 bit significand

26

IEEE 754 floating- point standard

• Leading “1” bit of significand is implicit

• Exponent is “biased” to make sorting easier
– all 0s is smallest exponent all 1s is largest
– bias of 127 for single precision and 1023 for double precision
– summary: (–1)sign × (1+significand) × 2exponent – bias

• Example:

– decimal: -.75 = -3/4 = -3/22

– binary: -.11 = -1.1 x 2-1

– floating point: exponent = 126 = 01111110

– IEEE single precision: 10111111010000000000000000000000

27

Floating Point Complexities

• Operations are somewhat more complicated (see text)
• In addition to overflow we can have “underflow”
• Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round
– four rounding modes
– positive divided by zero yields “infinity”
– zero divide by zero yields “not a number”
– other complexities

• Implementing the standard can be tricky
• Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!

28

Floating Point Add/Sub

• To add/sub two numbers
– We first compare the two exponents
– Select the higher of the two as the exponent of result
– Select the significand part of lower exponent number and shift it right by

the amount equal to the difference of two exponent
– Remember to keep two shifted out bit and a guard bit
– add/sub the signifand as required according to operation and signs of

operands
– Normalize significand of result adjusting exponent
– Round the result (add one to the least significant bit to be retained if the

first bit being thrown away is a 1
– Re-normalize the result

29

Floating Point Multiply

• To multiply two numbers
– Add the two exponent (remember access 127 notation)
– Produce the result sign as exor of two signs
– Multiple significand portions
– Results will be 1x.xxxxx… or 01.xxxx….
– In the first case shift result right and adjust exponent
– Round off the result
– This may require another normalization step

30

Floating Point Divide

• To divide two numbers
– Subtract divisor’s exponent from the dividend’s exponent

(remember access 127 notation)
– Produce the result sign as exor of two signs
– Divide dividend’s significand by divisor’s significand portions
– Results will be 1.xxxxx… or 0.1xxxx….
– In the second case shift result left and adjust exponent
– Round off the result
– This may require another normalization step

