A 32 bit ALU

- A Ripple carry ALU
- Two bits decide operation
- Add/Sub
- AND
- OR
- LESS
- 1 bit decide add/sub operation
- A carry in bit
- Bit 31 generates overflow and set bit

Carry look dead adder

- An approach in-between our two extremes
- Motivation:
- If we didn't know the value of carry-in, what could we do?
- When would we always generate a carry? $\quad g_{i}=a_{i} b_{i}$
- When would we propagate the carry? $\quad p_{i}=a_{i}+b_{i}$
- Did we get rid of the ripple?
$c_{1}=g_{0}+p_{0} c_{0}$
$c_{2}=g_{1}+p_{1} c_{1} \quad c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}$
$c_{3}=g_{2}+p_{2} c_{2} \quad c_{3}=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0}$
$c_{4}=g_{3}+p_{3} c_{3} \quad c_{4}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} c_{0}$
Feasible! Why?

Problem: ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
- two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?
$c_{1}=b_{0} c_{0}+a_{0} c_{0}+a_{0} b_{0}$
$c_{2}=b_{1} c_{1}+a_{1} c_{1}+a_{1} b_{1} \quad c_{2}=$
$c_{3}=b_{2} c_{2}+a_{2} c_{2}+a_{2} b_{2} \quad c_{3}=$
$c_{4}=b_{3} c_{3}+a_{3} c_{3}+a_{3} b_{3} \quad c_{4}=$
Not feasible! Why?

A 4 lit carry look thead adder

Delays in carry look head adders

- 4-Bit case
- Generation of g and $p: 1$ gate delay
- Generation of carries (and G and P): $\mathbf{2}$ more gate delay
- Generation of sum: 1 more gate delay
- 16-Bit case
- Generation of g and $p: 1$ gate delay
- Generation of block G and P: 2 more gate delay
- Generation of block carries: $\mathbf{2}$ more gate delay
- Generation of bit carries: 2 more gate delay
- Generation of sum: 1 more gate delay
- 64-Bit case
- 12 gate delays

Multiplication

- More complicated than addition
- accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on grade school algorithm

$$
\begin{aligned}
01010010 & \text { (multiplicand) } \\
\mathbf{x} 01101101 & \text { (multiplier) }
\end{aligned}
$$

- Negative numbers: convert and multiply
- Use other better techniques like Booth's encoding

Multiplication

Multiplication: Implementation

Final Version

Multiplication Example

Itera- tion	multi- plicand	Orignal algorithm		
	0010	Snitial values	Product	
1	0010	1:0 \Rightarrow no operation	00000110	
	0010	2: Shift right Product	000000110	
2	0010	1a:1 \Rightarrow prod = Prod + Mcand	00100011	
	0010	2: Shift right Product	00010001	
3	0010	1a:1 \Rightarrow prod = Prod + Mcand	00110001	
	0010	2: Shift right Product	00011000	
4	0010	1:0 \Rightarrow no operation	00011000	
	0010	2: Shift right Product	00001100	

Signed Multiplication

- Let Multiplier be $\mathbf{Q}[\mathrm{n}-1: 0]$, multiplicand be $\mathrm{M}[\mathrm{n}-1: 0$]
- Let $F=0$ (shift flag)
- Let result $A[n-1: 0]=0 . . .00$
- For $\mathrm{n}-1$ steps do
- $\mathrm{A}[\mathrm{n}-1: 0]=\mathrm{A}[\mathrm{n}-1: 0]+\mathrm{M}[\mathrm{n}-1: 0] \times \mathrm{Q}[0]$ /* * add partial product */
$-F<=F$.or. (M[n-1] .and. $Q[0]$) /* determine shift bit */
- Shift A and Q with F, i.e.,
- $A[n-2: 0]=A[n-1: 1] ; A[n-1]=F ; Q[n-1]=A[0] ; Q[n-2: 0]=Q[n-1: 1]$
- Do the correction step
- $A[n-1: 0]=A[n-1: 0]-M[n-1: 0] \times \operatorname{Q[0]} / *$ subtract partial product */
- Shift A and Q while retaining $A[n-1]$
- This works in all cases excepts when both operands are $10 . .00$

Booth's Encoding

- Numbers can be represented using three symbols, 1, 0, and -1
- Let us consider -1 in 8 bits
- One representation is 11111111
- Another possible one 0000000 -1
- Another example +14
- One representation is 00001110
- Another possible one 000100-10
- We do not explicitly store the sequence
- Look for transition from previous bit to next bit
- 0 to 0 is $0 ; 0$ to 1 is $-1 ; 1$ to 1 is 0 ; and 1 to 0 is 1
- Multiplication by 1, 0 , and $\mathbf{- 1}$ can be easily done
- Add all partial results to get the final answer

Using Booth's Encoding for Multiplication

- Convert a binary string in Booth's encoded string
- Multiply by two bits at a time
- For \mathbf{n} bit by \mathbf{n}-bit multiplication, $\mathbf{n} / \mathbf{2}$ partial product
- Partial products are signed and obtained by multiplying the multiplicand by $0,+1,-1,+2$, and -2 (all achieved by shift)
- Add partial products to obtain the final result
- Example, multiply 0111 (+7) by 1010 (-6)
- Booths encoding of 1010 is $\mathbf{- 1 + 1 - 1} 0$
- With 2-bit groupings, multiplication needs to be carried by -1 and -2
$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & \text { (multiplication by } \mathbf{- 2} \text {) }\end{array}$
$\begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & \text { (multiplication by }-1 \text { and shift by } 2 \text { positions) }\end{array}$
- Add the two partial products to get 11010110 (-42) as result

Booth's algorithm (Neg. multiplier

Itera- tion	multi- plicand	Booth's algorithm	
	0	Step	Product
1	0010	Initial values	000011010
	0010	1c: $10 \Rightarrow$ prod = Prod - Mcand	111011010
2	0010	2: Shift right Product	111101101
	0010	2: Shift right Product	000101101
3	0010	1c: $10 \Rightarrow$ prod = Prod - Mcand	111010110
	0010	2: Shift right Product	111101011
4	0010	1d: $11 \Rightarrow$ no operation	111101011
	0010	2: Shift right Product	111110101

Carry Sive Addition for Multiplication

- n-bit carry-save adder take 1FA time for any \mathbf{n}
- For $\mathrm{n} \times \mathrm{n}$ bit multiplication, n or $\mathrm{n} / 2$ (for 2 bit at time Booth's encoding) partial products can be generated
- For n partial products $n / 3$ n-bit carry save adders can be used
- This yields $2 n / 3$ partial results
- Repeat this operation until only two partial results are remaining
- Add them using an appropriate size adder to obtain 2 n bit result
- For $n=32$, you need 30 carry save adders in eight stages taking 8T time where T is time for one-bit full adder
- Then you need one carry-propagate or carry-look-ahead adder

Division

- Even more complicated
- can be accomplished via shifting and addition/subtraction
- More time and more area
- We will look at 3 versions based on grade school algorithm

0011 | 00100010 (Dividend)

- Negative numbers: Even more difficult
- There are better techniques, we won't look at them

Division, First Version

Restoring Division

Iteration	Divisor	Divide algorithm	
		Step	Remainder
0	0010	Initial values	00000111
	0010	Shift Rem left 1	00001110
2	0010	2: Rem $=$ Rem - Div	11101110
	0010	3b: Rem $<0 \Rightarrow+$ Div, sll R, R $0=0$	00011100
	0010	2: Rem $=$ Rem - Div	11111100
	0010	3b: Rem $<0 \Rightarrow+$ Div, sll R, R0 $=0$	00111000
4	0010	2: Rem $=$ Rem - Div	00011000
	0010	3a: Rem $\geq 0 \Rightarrow$ sll R, R0 $=1$	00110001
Done	0010	2: Rem $=$ Rem - Div	00010001

Non Restoring Division

Iteration	Divisor	Divide algorithm	
		Step	Remainder
1	0010	Initial values	00001110
	0010	1: Rem $=$ Rem - Div	11101110
	0010	2b: Rem $<0 \Rightarrow$ sll R, R0 $=0$	11011100
	0010	3b: Rem $=$ Rem + Div	11111100
2	0010	2b: Rem $<0 \Rightarrow$ sll R, R0 $=0$	11111000
	0010	3b: Rem $=$ Rem + Div	00011000
3	0010	2a: Rem $>0 \Rightarrow$ sll R, R0 $=1$	00110001
	0010	3a: Rem $=$ Rem - Div	00010001
4	0010	2a: Rem $>0 \Rightarrow$ sll R, R0 $=1$	00100011
Done	0010	shift left half of Rem right 1	00010011

Floating Point (a brief look)

- We need a way to represent
- numbers with fractions, e.g., 3.1416
- very small numbers, e.g., 000000001
- very large numbers, e.g., 3.15576×10^{9}
- Representation:
- sign, exponent, significand: $(-1)^{\text {sign }} \times$ significand $\times 2^{\text {exponent }}$
- more bits for significand gives more accuracy
- more bits for exponent increases range
- IEEE 754 floating point standard:
- single precision: 8 bit exponent, 23 bit significand
- double precision: 11 bit exponent, 52 bit significand

IEEE 754 floating point standard

- Leading " 1 " bit of significand is implicit
- Exponent is "biased" to make sorting easier
- all 0 s is smallest exponent all 1 s is largest
- bias of 127 for single precision and 1023 for double precision
- summary: $(-1)^{\text {sign }} \times(1+$ significand $) \times 2^{\text {exponent }- \text { bias }}$
- Example:
- decimal: $-.75=-3 / 4=-3 / 2^{2}$
- binary: -.11=-1.1 $\times 2^{-1}$
- floating point: exponent $=126=01111110$
- IEEE single precision: 10111111010000000000000000000000

Floating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have "underflow"
- Accuracy can be a big problem
- IEEE 754 keeps two extra bits, guard and round
- four rounding modes
- positive divided by zero yields "infinity"
- zero divide by zero yields "not a number"
- other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
- see text for description of 80×86 and Pentium bug!

Floating Point Add/Sub

- To add/sub two numbers
- We first compare the two exponents
- Select the higher of the two as the exponent of result
- Select the significand part of lower exponent number and shift it right by the amount equal to the difference of two exponent
- Remember to keep two shifted out bit and a guard bit
- add/sub the signifand as required according to operation and signs of operands
- Normalize significand of result adjusting exponent
- Round the result (add one to the least significant bit to be retained if the first bit being thrown away is a 1
- Re-normalize the result

Floating Point Multiply

- To multiply two numbers

- Add the two exponent (remember access 127 notation)
- Produce the result sign as exor of two signs
- Multiple significand portions
- Results will be 1x.xxxxx... or 01.xxxx....
- In the first case shift result right and adjust exponent
- Round off the result
- This may require another normalization step

Floating Point Divide

- To divide two numbers
- Subtract divisor's exponent from the dividend's exponent (remember access 127 notation)
- Produce the result sign as exor of two signs
- Divide dividend's significand by divisor's significand portions
- Results will be 1.xxxxx... or 0.1xxxx....
- In the second case shift result left and adjust exponent
- Round off the result
- This may require another normalization step

