

Multiplication	
01010010 (multiplicand) x01101101 (multiplicand) 01010010 x1 01010010 x1 001000000 001010010 x1 001010010 x0 001010010 x1 01010010 x1 01010010 x1 01010010 x1 01010010 x1	01010010 (multiplicand) x01101101 (multiplicr) 00000000 01010010 x1 01010010 000000000 x0 001010010 010100100 x1 0110011010
010100100000 x1 100001010 0000000000 x0 010000101010 01000100000 x1 011100100000 x1 010100100000 x1 10000101101010 0000000000 x1 00000000000 x1 000000101100100 00000000000 x0 000000000000 x0	$\begin{array}{c} \frac{0.1010010000}{100010010} & \frac{x1}{1000010010} \\ 0.0000100100 \\ 0.100001000000 & x0 \\ 0.1010010000000 & x1 \\ 0.111001101010 \\ 0.000000000000 & x1 \\ 10001011101010 \\ 0.000000000000 & x0 \\ 0.0000000000000 & x0 \\ 0.0000001011101010 \\ \end{array}$

Itoro	multi	Orignal algorith	~
tion	plicand	Step	Product
0	0010	Initial values	0000 0110
1	0010	$1:0 \Rightarrow$ no operation	0000 0110
1	0010	2: Shift right Product	0000 0011
2	0010	$1a:1 \Rightarrow prod = Prod + Mcand$	0010 001
	0010	2: Shift right Product	0001 0001
3	0010	$1a:1 \Rightarrow prod = Prod + Mcand$	0011 0001
	0010	2: Shift right Product	0001 1000
4	0010	$1:0 \Rightarrow$ no operation	0001 1000

Signed Multiplication

- · Let Multiplier be Q[n-1:0], multiplicand be M[n-1:0]
- Let F = 0 (shift flag)
- Let result A[n-1:0] = 0....00
- · For n-1 steps do
 - A[n-1:0] = A[n-1:0] + M[n-1:0] x Q[0] /* add partial product */
 - F<= F .or. (M[n-1] .and. Q[0]) /* determine shift bit */</p>
 - Shift A and Q with F, i.e.,
 - A[n-2:0] = A[n-1:1]; A[n-1]=F; Q[n-1]=A[0]; Q[n-2:0]=Q[n-1:1]
- · Do the correction step
 - A[n-1:0] = A[n-1:0] M[n-1:0] x Q[0] /* subtract partial product */
 - Shift A and Q while retaining A[n-1]
 - This works in all cases excepts when both operands are 10..00
- 13

Booth's Encoding

•

- · Numbers can be represented using three symbols, 1, 0, and -1
- Let us consider -1 in 8 bits
 - One representation is 11111111
 - Another possible one 0000000-1
- · Another example +14 - One representation is 00001110
 - Another possible one 000100-10 We do not explicitly store the sequence
- Look for transition from previous bit to next bit
- 0 to 0 is 0; 0 to 1 is -1; 1 to 1 is 0; and 1 to 0 is 1
- Multiplication by 1, 0, and -1 can be easily done
- Add all partial results to get the final answer

14

Using Booth's Encoding for Multiplication

- Convert a binary string in Booth's encoded string
- Multiply by two bits at a time .
- For n bit by n-bit multiplication, n/2 partial product
- Partial products are signed and obtained by multiplying the . multiplicand by 0, +1, -1, +2, and -2 (all achieved by shift)
- Add partial products to obtain the final result
- Example, multiply 0111 (+7) by 1010 (-6)
- Booths encoding of 1010 is -1 +1 -1 0
- . With 2-bit groupings, multiplication needs to be carried by -1 and -2

- 1
 1
 1
 0
 0
 1
 0
 (multiplication by -2)

 1
 1
 1
 0
 0
 1
 0
 (multiplication by -1 and shift by 2 positions)
- · Add the two partial products to get 11010110 (-42) as result

15

Itera-	multi-	Booth's algorithm		
tion	n plicand	Step	Product	
0	0010	Initial values	0000 1101 0	
1	0010	1c: 10⇒ prod = Prod - Mcand	1110 1101 0	
	0010	2: Shift right Product	1111 0110 1	
2	0010	1b: 01 \Rightarrow prod = Prod + Mcand	0001 0110 1	
	0010	2: Shift right Product	0000 1011 0	
3	0010	1c: 10⇒ prod = Prod - Mcand	1110 1011 0	
	0010	2: Shift right Product	1111 0101 1	
4	0010	1d: 11 \Rightarrow no operation	1111 0101 1	
	0010	2: Shift right Product	1111 1010 1	

ırry Sa	ve Addition
Consider	adding six set of numbers (4 bits each in the example)
The numb	pers are 1001, 0110, 1111, 0111, 1010, 0110 (all positive)
One way i adding th	is to add them pair wise, getting three results, and then em again
1001	1111 101001111 ,100101
0110	0111 0110 10110 10000
01111	10110 10000 100101 110101
Other me	thod is add them three at a time by saving carry
1001	0111 ,00000 ,010101 ,001101
0110	1010 11110 /010100 / 101000
1111	8110 01011 0001100 110101
00000	01011 010101 001101 SUM
11110 /	01100 010100 101000 - CARRY

17

•	n-bit carry-save adder take 1FA time for any n
•	For n x n bit multiplication, n or n/2 (for 2 bit at time Booth's encoding) partial products can be generated
•	For n partial products n/3 n-bit carry save adders can be used
•	This yields 2n/3 partial results
•	Repeat this operation until only two partial results are remaining

Carry Save Addition for Multiplication

- Add them using an appropriate size adder to obtain 2n bit result
- For n=32, you need 30 carry save adders in eight stages taking 8T time where T is time for one-bit full adder
- Then you need one carry-propagate or carry-look-ahead adder

Iteration	Divisor	Divide algorithm	
		Step	Remainder
0	0010	Initial values	0000 0111
	0010	Shift Rem left 1	0000 1110
	0010	2: Rem = Rem - Div	1110 1110
1	0010	3b: Rem $< 0 \Rightarrow$ + Div, sll R, R0 = 0	0001 1100
2	0010	2: Rem = Rem - Div	1111 1100
	0010	3b: Rem < 0 \Rightarrow + Div, sll R, R0 = 0	0011 1000
3	0010	2: Rem = Rem - Div	0001 1000
	0010	$3a: Rem \ge 0 \Rightarrow sll R, R0 = 1$	0011 0001
4	0010	2: Rem = Rem - Div	0001 0001
	0010	$3a: Rem \ge 0 \Rightarrow sll R, R0 = 1$	0010 0011
Done	0010	shift left half of Rem right 1	0001 0011

Iteration	Divisor	Divide algorith	m
1		Step	Remainder
0	0010	Initial values	0000 1110
	0010	1: Rem = Rem - Div	1110 1110
1	0010	2b: Rem $< 0 \Rightarrow$,sll R, R0 = 0	1101 1100
	0010	3b: Rem = Rem + Div	1111 1100
2	0010	2b: Rem $< 0 \Rightarrow$ sll R, R0 = 0	1111 1000
	0010	3b: Rem = Rem + Div	0001 1000
3	0010	2a: Rem $> 0 \Rightarrow$ sll R, R0 = 1	0011 0001
	0010	3a: Rem = Rem - Div	0001 0001
4	0010	2a: Rem $> 0 \Rightarrow$ sll R, R0 = 1	0010 0011
Done	0010	shift left half of Rem right 1	0001 0011

Floating Point Complexities

- · Operations are somewhat more complicated (see text)
- In addition to overflow we can have "underflow"
- Accuracy can be a big problem
- IEEE 754 keeps two extra bits, guard and round
- four rounding modes
- positive divided by zero yields "infinity"
- zero divide by zero yields "not a number"
- other complexities
- Implementing the standard can be tricky
- Not using the standard can be even worse
 - see text for description of 80x86 and Pentium bug!

27

Floating Point Add/Sub I conduct the numbers Select the significant part of lower exponent of result Select the significant part of lower exponent number and shift it right by source the significant part of lower exponent number and shift it right by source the significant part of lower exponent number and shift it right by source the significant part of lower exponent number and shift it right by source the significant part of lower exponent number and shift it right by source the significant part of lower exponent number and shift it right by source the significant part of lower exponent number and signs of source and shift it parts it does not not help as significant bit to be retained if the first bit being thrown away is a 1 Re-normalize the result

Floating Point Multiply

- · To multiply two numbers
 - Add the two exponent (remember access 127 notation)
 - Produce the result sign as exor of two signs
 - Multiple significand portions
 - Results will be 1x.xxxxx... or 01.xxxx...
 - In the first case shift result right and adjust exponent
 - Round off the result
 - This may require another normalization step

Floating Point Divide

To divide two numbers

- Subtract divisor's exponent from the dividend's exponent (remember access 127 notation)
- Produce the result sign as exor of two signs
- Divide dividend's significand by divisor's significand portions
- Results will be 1.xxxxx... or 0.1xxxx...
- In the second case shift result left and adjust exponent
- Round off the result
- This may require another normalization step