Datapath & Control Design

« We will design a simplified MIPS processor
« The instructions supported are
— memory-reference instructions: 1w, sw
— arithmetic-logical instructions: add, sub, and, or, slt
— control flow instructions: beq, j
« Generic Implementation:
— use the program counter (PC) to supply instruction address
— get the instruction from memory
— read registers
— use the instruction to decide exactly what to do
« Allinstructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?

What blocks we need

+ We need an ALU
— We have already designed that
+ We need memory to store inst and data
— Instruction memory takes address and supplies inst
— Data memory takes address and supply data for Iw
— Data memory takes address and data and write into memory
+ We need to manage a PC and its update mechanism
+ We need a register file to include 32 registers
— We read two operands and write a result back in register file
+ Some times part of the operand comes from instruction
+« We may add support of immediate class of instructions
+ We may add support for J, JR, JAL

Simple Implementation
+__Include the functional units we need for each instruction
| Insnation _
- \
Instruction =+
Insincion — Address Read|
memory - data 16 sign
—exena
|t Dat
data momary
a Instrucion memory b. Program counter
S| Read
st Reax]
Register | 5| Readt datat[2. Data memory unit b. Sign-extension unit
rumbers | =] register2
Registers. Daa
3| wite .
el P/ N Why do we need this stuff?
{—{ur ™
a Regsters b.ALU

More Implementation Details

* Abstract/ Simplified View:

L Data

| Register #
[PC 1| Address Registers
Instruction | Register #

memory

Address.

Data

Register # memory

Data

« Two types of functional units:
— elements that operate on data values (combinational)
* Example: ALU
— elements that contain state (sequential)
* Examples: Program and Data memory, Register File

Managing State Elements

* Unclocked vs. Clocked
« Clocks used in synchronous logic
— when should an el t that tains state be updated?

falling edge

I I

4 4

cycle time
rising edge

Building the Datapath

« Use multiplexors to stitch them together

Registers

Read
address

Instruction
Read.

Address' Readlly,
data 2 R

Instruction
memory

Data
Wite memory

data

Latches and Flip flops

« Output is equal to the stored value inside the element
(don't need to ask for permission to look at the value)
— "logically true” could mean electrically low
« Change of state (value) is based on the clock
« Latches: whenever the inputs change, and the clock is asserted
« Flip-flop: state changes only on a clock edge
(edge-triggered methodology)

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

An unclocked state element

* The set-reset latch
— output depends on present inputs
— If present inputs are 00, then it depends on the past inputs
— What happens if R=1, S=1?

3

o

b htch

+ Two inputs:

— the data value to be stored (D)

— the clock signal (C) indicating when to read & store D
+ Two outputs:

— the value of the internal state (Q) and it's complement

D flip flop

« Output changes only on the clock edge

o5 ;@ 5 ,0a
en ateh
c ™ol 1o

Our Implementation

* An edge triggered methodology

« Typical execution:
— read contents of some state elements,
— send values through some combinational logic
— write results to one or more state elements

Stto B
element Combinatonallogic
T 2

Clock cycle m

Register File
« Built using D flip-flops
Rond rogsr=]
et
Regeiars
Rogetert
- 1> Read data 1 Wike
Fogier 7 <
Rogslern Rogistor0
numbor 2 x Register number — © rogsert
L=,
L1V H rendaz
— =
Resisorn- 1
p— Rogisarn
R ol ’
| Resa rogter
sl
g
e
e Pni
—

