
1

• We will design a simplified MIPS processor
• The instructions supported are

– memory-reference instructions: lw, sw
– arithmetic-logical instructions: add, sub, and, or, slt
– control flow instructions: beq, j

• Generic Implementation:

– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?

Datapath & Control Design

2

• We need an ALU
– We have already designed that

• We need memory to store inst and data
– Instruction memory takes address and supplies inst
– Data memory takes address and supply data for lw
– Data memory takes address and data and write into memory

• We need to manage a PC and its update mechanism
• We need a register file to include 32 registers

– We read two operands and write a result back in register file
• Some times part of the operand comes from instruction
• We may add support of immediate class of instructions
• We may add support for J, JR, JAL

What blocks we need

3

Simple Implementation

• Include the functional units we need for each instruction

Why do we need this stuff?

PC

Instruction�
memory

Instruction�
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

ALU control

RegWrite

Registers
Write�
register

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Write�
data

ALU�
result

ALU

Data

Data

Register�
numbers

a. Registers b. ALU

Zero
5

5

5 3

16 32
Sign�

extend

b. Sign-extension unit

MemRead

MemWrite

Data�
memory

Write�
data

Read�
data

a. Data memory unit

Address

4

• Abstract / Simplified View:

• Two types of functional units:
– elements that operate on data values (combinational)

• Example: ALU
– elements that contain state (sequential)

• Examples: Program and Data memory, Register File

More Implementation Details

Registers
Register #

Data

Register #

Data�
memory

Address

Data

Register #

PC Instruction ALU

Instruction�
memory

Address

5

• Unclocked vs. Clocked
• Clocks used in synchronous logic

– when should an element that contains state be updated?

cycle time
rising edge

falling edge

Managing State Elements

6

Building the Datapath

• Use multiplexors to stitch them together

PC

Instruction�
memory

Read�
address

Instruction

16 32

Add ALU�
result

M�
u�
x

Registers

Write�
register
Write�
data

Read�
data 1

Read�
data 2

Read�
register 1
Read�
register 2

Shift�
left 2

4

M�
u�
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc
MemtoReg

ALU�
result

Zero
ALU

Data�
memory

Address�
�

Write�
data

Read�
data M�

u�
x

Sign�
extend

Add

7

• Output is equal to the stored value inside the element
(don't need to ask for permission to look at the value)

– "logically true” could mean electrically low
• Change of state (value) is based on the clock
• Latches: whenever the inputs change, and the clock is asserted
• Flip-flop: state changes only on a clock edge

(edge-triggered methodology)

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

Latches and Flip- flops

8

• The set-reset latch
– output depends on present inputs
– If present inputs are 00, then it depends on the past inputs
– What happens if R=1, S=1?

An unclocked state element

9

• Two inputs:
– the data value to be stored (D)
– the clock signal (C) indicating when to read & store D

• Two outputs:
– the value of the internal state (Q) and it's complement

D- latch

Q

C

D

_
Q

D

C

Q

10

D flip- flop

• Output changes only on the clock edge

�

QQ

_
Q

Q

_
Q

D�
latch

D

C

D�
latch

DD

C

C

D

C

Q

11

Our Implementation

• An edge triggered methodology
• Typical execution:

– read contents of some state elements,
– send values through some combinational logic
– write results to one or more state elements

Clock cycle

State�
element�

1
Combinational logic

State�
element�

2

12

• Built using D flip-flops

Register File

M�
u�
x

Register 0
Register 1

Register n – 1
Register n

M�
u�
x

Read data 1

Read data 2

Read register�
number 1

Read register�
number 2

Read register�
number 1 Read�

data 1

Read�
data 2

Read register�
number 2

Register file
Write�
register

Write�
data Write

n-to-1�
decoder

Register 0

Register 1

Register n – 1
C

C

D

D
Register n

C

C

D

D

Register number

Write

Register data

0
1

n – 1
n

