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• We will design a simplified MIPS processor
• The instructions supported are

– memory-reference instructions: lw, sw 
– arithmetic-logical instructions:  add, sub, and, or, slt
– control flow instructions: beq, j

• Generic Implementation:

– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why?  memory-reference?  arithmetic? control flow?

Datapath & Control Design
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• We need an ALU
– We have already designed that

• We need memory to store inst and data
– Instruction memory takes address and supplies inst
– Data memory takes address and supply data for lw
– Data memory takes address and data and write into memory

• We need to manage a PC and its update mechanism
• We need a register file to include 32 registers

– We read two operands and write a result back in register file
• Some times part of the operand comes from instruction
• We may add support of immediate class of instructions
• We may add support for J, JR, JAL

What blocks we need
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Simple Implementation

• Include the functional units we need for each instruction

Why do we need this stuff?
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• Abstract / Simplified View:

• Two types of functional units:
– elements that operate on data values (combinational)

• Example: ALU
– elements that contain state (sequential)

• Examples: Program and Data memory, Register File

More Implementation Details
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• Unclocked vs. Clocked
• Clocks used in synchronous logic 

– when should an element that contains state be updated?

cycle time
rising edge

falling edge

Managing State Elements
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Building the Datapath

• Use multiplexors to stitch them together
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• Output is equal to the stored value inside the element
(don't need to ask for permission to look at the value)

– "logically true” could mean electrically low
• Change of state (value) is based on the clock
• Latches:  whenever the inputs change, and the clock is asserted
• Flip-flop:  state changes only on a clock edge

(edge-triggered methodology)

A clocking methodology defines when signals can be read and written
— wouldn't want to read a signal at the same time it was being written

Latches and Flip- flops
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• The set-reset latch
– output depends on present inputs 
– If present inputs are 00, then it depends on the past inputs
– What happens if R=1, S=1?

An unclocked state element
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• Two inputs:
– the data value to be stored (D)
– the clock signal (C) indicating when to read & store D

• Two outputs:
– the value of the internal state (Q) and it's complement

D- latch
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D flip- flop

• Output changes only on the clock edge
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Our Implementation

• An edge triggered methodology
• Typical execution:

– read contents of some state elements, 
– send values through some combinational logic
– write results to one or more state elements
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• Built using D flip-flops

Register File
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