
1

A Complete Datapath for R- Type Instructions

• Lw, Sw, Add, Sub, And, Or, Slt can be performed
• For j (jump) we need an additional multiplexor

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction�
memory

Read�
address

Instruction�
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

RegWrite

4

16 32Instruction [15–0]

0
Registers

Write�
register
Write�
data

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1
Read�
register 2

Sign�
extend

ALU�
result

Zero

Data�
memory

Address Read�
data M�

u�
x

1

0

M�
u�
x

1

0

M�
u�
x

1

0

M�
u�
x

1

Instruction [15–11]

ALU�
control

Shift�
left 2

PCSrc

ALU

Add ALU�
result

2

What Else is Needed in Data Path

• Support for j and jr
– For both of them PC value need to come from somewhere else
– For J, PC is created by 4 bits (31:28) from old PC, 26 bits from IR

(27:2) and 2 bits are zero (1:0)
– For JR, PC value comes from a register

• Support for JAL
– Address is same as for J inst
– OLD PC needs to be saved in register 31

• And what about immediate operand instructions
– Second operand from instruction, but without shifting

• Support for other instructions like lw and immediate inst write

3

Control

• For each instruction
– Select the registers to be read (always read two)
– Select the 2nd ALU input
– Select the operation to be performed by ALU
– Select if data memory is to be read or written
– Select what is written and where in the register file
– Select what goes in PC

• Information comes from the 32 bits of the instruction
• Example:

add $8, $17, $18 Instruction Format:
000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

4

Adding Control to DataPath

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M�
u�
x

0

1

Control

Add ALU�
result

M�
u�
x

0

1

Registers
Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Sign�
extend

Shift�
left 2

M�
u�
x

1

ALU�
result

Zero

Data�
memory

Write�
data

Read�
data

M�
u�
x

1

Instruction [15– 11]

ALU�
control

ALU
Address

5

• All of the logic is combinational
• We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away
– we use write signals along with clock to determine when to write

• Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times

Clock cycle

State�
element�

1
Combinational logic

State�
element�

2

6

• ALU's operation based on instruction type and function code
– e.g., what should the ALU do with any instruction

• Example: lw $1, 100($2)

•
35 2 1 100

 op rs rt 16 bit offset

• ALU control input

000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

• Why is the code for subtract 110 and not 011?

ALU Control

7

• Must describe hardware to compute 3-bit ALU conrol input
– given instruction type

00 = lw, sw
01 = beq,
10 = arithmetic

 11 = Jump
– function code for arithmetic

• Control can be described using a truth table:

ALUOp
computed from instruction type

Other Control Information

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

8

Implementation of Control

• Simple combinational logic to realize the truth tables

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

ALUOp0

ALUOp

ALU control block

R-format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

9

A Complete Datapath with Control

10

Datapath with Control and Jump Instruction

11

Timing: Single Cycle Implementation

• Calculate cycle time assuming negligible delays except:
– memory (2ns), ALU and adders (2ns), register file access (1ns)

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write�
register
Write�
data

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1
Read�
register 2

Sign�
extend

ALU�
result

Zero

Data�
memory

Address Read�
data M�

u�
x

1

0

M�
u�
x

1

0

M�
u�
x

1

0

M�
u�
x

1

Instruction [15– 11]

ALU�
control

Shift�
left 2

PCSrc

ALU

Add ALU�
result

12

Where we are headed

• Single Cycle Problems:
– what if we had a more complicated instruction like floating point?
– wasteful of area

• One Solution:
– use a “smaller” cycle time
– have different instructions take different numbers of cycles
– a “multicycle” datapath:

PC

Memory

Address

Instruction�
or data

Data

Instruction�
register

Registers
Register #

Data

Register #

Register #

ALU

Memory�
data �

register

A

B

ALUOut

13

Instruction Format

31 26 25 21 20 16 15 11 10 6 5 0

JUMP JUMP ADDRESS

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2BEQ/BNE BRANCH ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2SW STORE ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2LW LOAD ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

14

Operation for Each Instruction

LW:

1. READ INST

2. READ REG 1

READ REG 2

3. ADD REG 1 +
OFFSET

4. READ MEM

5. WRITE REG2

SW:

1. READ INST

2. READ REG 1

READ REG 2

3. ADD REG 1 +
OFFSET

4. WRITE MEM

5.

R-Type:

1. READ INST

2. READ REG 1

READ REG 2

3. OPERATE on
REG 1 / REG 2

4.

5. WRITE DST

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

3. SUB REG 2
from REG 1

4.

5.

JMP-Type:

1. READ

INST

2.

3.

4.

5.

15

• We will be reusing functional units
– Break up the instruction execution in smaller steps
– Each functional unit is used for a specific purpose in one cycle
– Balance the work load
– ALU used to compute address and to increment PC
– Memory used for instruction and data

• At the end of cycle, store results to be used again
– Need additional registers

• Our control signals will not be determined solely by instruction
– e.g., what should the ALU do for a “subtract” instruction?

• We’ll use a finite state machine for control

Multicycle Approach

16

• Finite state machines:
– a set of states and
– next state function (determined by current state and the input)
– output function (determined by current state and possibly input)

– We’ll use a Moore machine (output based only on current state)

Review: finite state machines

Next-state�
functionCurrent state

Clock

Output�
function

Next�
state

Outputs

Inputs

17

Multi- Cycle DataPath Operation

M
U
X

PC

M
U
X

M
U
X

ALU

4
M
U
X

M
U
X

A
L
U

CONTROL

ALU
CON

ALUOP

Shift
Left 2

25-00

25-21

20-16

15-11

15-00

05-00

31-26

Sign
Ext

I
R

MEM

Add

Data
Out

M
U
X

Data In

REG
FILE

RA1

RA2
RD1

RD2WA WD

A
R

B
R

D
R

MEM

Add

Data
Out

M
U
X

Data In

BR
COND

BEQ
BNE

JUMP

18

• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Five Execution Steps

19

• Use PC to get instruction and put it in the Instruction Register.
• Increment the PC by 4 and put the result back in the PC.
• Can be described succinctly using RTL "Register-Transfer Language"

IR = Memory[PC];
PC = PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

20

• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction is a branch
• RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

• We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

Step 2: Instruction Decode and Register Fetch

21

• ALU is performing one of three functions, based on instruction type

• Memory Reference:

ALUOut = A + sign-extend(IR[15-0]);

• R-type:

ALUOut = A op B;

• Branch:

if (A==B) PC = ALUOut;

Step 3 (instruction dependent)

22

• Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;

• R-type instructions finish

Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the cycle on the edge

Step 4 (R- type or memory- access)

23

• Reg[IR[20-16]]= MDR;

What about all the other instructions?

Write- back step

24

Summary:

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

