A Complete Datapath for R Type Instructions

* Lw, Sw, Add, Sub, And, Or, Slt can be performed
« Forj (jump) we need an additional multiplexor

Instructon [25-21)

address [insiruction [20- 16)

Instruction [15-11)| ¥

Pt Regses

24
R
=8
L GERED

F
Instruction [15-0] 16 [sgn | 2
exend

Instrucion [5-0] \ \

What Else is Needed in Data Path

« Support for j and jr
— For both of them PC value need to come from somewhere else

— For J, PC is created by 4 bits (31:28) from old PC, 26 bits from IR
(27:2) and 2 bits are zero (1:0)

— For JR, PC value comes from a register
« Support for JAL
— Address is same as for J inst
— OLD PC needs to be saved in register 31
+ And what about immediate operand instructions
— Second operand from instruction, but without shifting

« Support for other instructions like lw and immediate inst write

Control

« Foreach instruction
— Select the registers to be read (always read two)
— Select the 2nd ALU input
— Select the operation to be performed by ALU
— Select if data memory is to be read or written
— Select what is written and where in the register file
— Select what goes in PC
+ Information comes from the 32 bits of the instruction
+ Example:

add $8, $17, $18 Instruction Format:
‘oooooo | 10001 H 10010 | 01000 H 00000 |1ooooo ‘

‘ op | rs H rt | rd H shamt | funct‘

Adding Control to DataPath

Memto- | Reg | Mem | Mem
i RegDst | ALUSrc| Req |Write| Read|Write| Branch | ALUOp1 | ALUPO
R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beg X 0 X 0 0 0 1 0 1

Our Simple Control Structure

« All of the logic is combinational
« We wait for everything to settle down, and the right thing to be done
— ALU might not produce “right answer” right away
— we use write signals along with clock to determine when to write
« Cycle time determined by length of the longest path

State State
alement Gombinational logc clement
i 2

Clock ycle m

We are ignoring some details like setup and hold times

ALU Control

« ALU's operation based on instruction type and function code
— e.g., what should the ALU do with any instruction
« Example: Iw $1, 100($2)

T s 2 [] |

‘ op‘ rs ‘ rt ‘ 16 bit offset ‘

+ ALU control input

000 AND

001 OR

010 add

110 subtract

111 set-on-less-than

+ Why is the code for subtract 110 and not 011?

Other Control Information

* Must describe hardware to compute 3-bit ALU conrol input
— given instruction type

00 = Iw, sw ALUOp

01= be.q, . computed from instruction type
10 = arithmetic

11 = Jump

— function code for arithmetic
« Control can be described using a truth table:

ALUOp Funct field Op
ALUOp1 |ALUOpO|F5|F4|F3|F2[F1|F0
0 0 XIX|X[X[X|X 010
X 1 XX | X[X[X]|X 110
1 X X[X|0[0]0]|O 010
1 X X|X|0|0|1]0 110
1 X X[X|0[1]0]0 000
1 X X|X]0|1]0]1 001
1 X X[{X|1]{0]1]0 111

Implementation of Control

« Simple combinational logic to realize the truth tables

Inputs
o5,
ot

ALY o

AUcorird Hok 1
|

s ooo0 .

) ALUsre

[Cperetin

MemWrite

Branch
ALUOpT

ALUORO

A Complete Datapath with Control

Datapath with Control and Jump Instruction

Timing: Single Cycle Implementation

+ Calculate cycle time assuming negligible delays except:
— memory (2ns), ALU and adders (2ns), register file access (1ns)

1
Instruction [25-21] Read
Read register 1 Read| Memwi
address Instruction [20- 16] Read ata 1 -
Instruction | O 2 Read Zzerg)
B1-0 je|Write " data2 o) Read| (7
W register data
Instruction nsiruction [15- 14| |\wete v
memory 0] P'ldata_ Registers [
Wiite . Data 0
RegD data_memory r
Instruction [15-0] 16 (sign") 32 -

@+ “' ‘
Instruction [5-0] \

10
Where we are headed
« Single Cycle Problems:
— what if we had a more complicated instruction like floating point?
— wasteful of area
+ One Solution:
— use a “smaller” cycle time
— have different instructions take different numbers of cycles
— a “multicycle” datapath:
register
Register #
ey "Scien — s
data
12

Instruction Format

Operation for Each Instruction

LW: SW: R-Type: BR-Type: JMP-Type:
1.READ INST |1.READINST |1.READINST |1.READINST |1.READ
INST
2.READ REG 1 |2. READREG 1 |2. READ REG 1 |2. READ REG 1 | 2.
READ REG 2 READ REG 2 READ REG 2 READ REG 2

3. ADDREG 1 +{3. ADD REG 1 +|3. OPERATE on | 3. SUBREG2 |3.

OFFSET OFFSET REG 1 /REG2 |from REG 1
4. READ MEM | 4. WRITE MEM | 4. 4. 4
5. WRITE REG2| 5. 5. WRITE DST | 5. 5

31 26 25 21 20 1615 1110 6 s 0
w REG 1 ‘ REG2 LOAD ADDRESS OFFSET

31 26 25 21 20 1615 1110 6 s 0
sw REG 1 ‘ REG 2 STORE ADDRESS OFFSET

31 26 25 21 20 1615 1110 6 5 0
R-TYPE REG | ‘ REG2 DST ‘ SHIFT AMOUNT | ADD/AND/OR/SLT|

31 26 25 21 20 1615 1110 6 s 0
BEQENE REG | REG2 BRANCH ADDRESS OFFSET

31 26 25 21 20 1615 1110 6 5 0

‘ Jump ump ADDRESS

« We will be reusing functional units
— Break up the instruction execution in smaller steps
— Each functional unit is used for a specific purpose in one cycle
— Balance the work load
— ALU used to compute address and to increment PC
— Memory used for instruction and data
« At the end of cycle, store results to be used again
— Need additional registers
« Our control signals will not be determined solely by instruction
— e.g., what should the ALU do for a “subtract” instruction?
« We’'ll use a finite state machine for control

15
Multi Grele DataPath Operation
M
Lo
X
PC M
v
Add
BR
MEM| ":“ﬂ COND
Data In ALU BNE
CON| BEQ
ALUOP JUMP

14
Review: finite state machines
« Finite state machines:
— aset of states and
— next state function (determined by current state and the input)
— output function (determined by current state and possibly input)
Noxt
Output Outputs
funcion
— We’ll use a Moore machine (output based only on current state)
16
Five Execution Steps
« Instruction Fetch
« Instruction Decode and Register Fetch
« Execution, Memory Address Computation, or Branch Completion
« Memory Access or R-type instruction completion
+ Write-back step
INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!
18

Step 1: Instruction Fetch

* Use PC to get instruction and put it in the Instruction Register.
« Increment the PC by 4 and put the result back in the PC.
« Can be described succinctly using RTL "Register-Transfer Language"

IR
PC

Memory[PC] ;
PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 2: Instruction Decode and Register Fetch

* Read registers rs and rt in case we need them
« Compute the branch address in case the instruction is a branch
+ RTL:

A = Reg[IR[25-21]];

B = Reg[IR[20-16]];

ALUOut = PC + (sign-extend(IR[15-0]) << 2);

+ We aren't setting any control lines based on the instruction type
(we are busy "decoding” it in our control logic)

20

19
Step 3 (instruction dependent)
« ALU is performing one of three functions, based on instruction type
* Memory Reference:
ALUOut = A + sign-extend (IR[15-0]);
* R-type:
ALUOut = A op B;
« Branch:
if (A==B) PC = ALUOut;
21

Step 4 (R type or memory acess)

« Loads and stores access memory

MDR = Memory [ALUOut] ;
or
Memory [ALUOut] = B;

* R-type instructions finish

Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the cycle on the edge

22

Write lack step

+ Reg[IR[20-16]]= MDR;

What about all the other instructions?

23

Summary:
Action for Rtype Adimforn’emy-referm| Action for | Action for
Step name i i i { branches jumps
Instruction fetch IR=Memony{PC]
PC=PC+4

Instruction A=Reg[IR25-21]]
decodelregister fetch B=Reg [IR20-16])

ALUOUt = PC + (sign-extend (IR[15-0]) <<2)
Exeaution, address AUOUt=AopB | ALUQUt=A+signextend | if (A=B)then | PC=PC[31-28] Il
computation, branahy (IR[15-0]) PC=ALUOU | (IR250[<<2)
jump completion
Mermory access or Rtype | Reg [IR115-11]] = | Load: MDR = Memony{ALUOU]
completion ALUOuUt or

Store: Memory [ALUOUf] =B
Memor i Load: Reg[IR[20-16] = VDR

24

