Instruction Format

Operation for Each Instruction

31 26 25 21 20 1615 1110 6 s 0
w REG 1 ‘ REG2 LOAD ADDRESS OFFSET
31 26 25 21 20 1615 1110 6 s 0
sw REG 1 ‘ REG 2 STORE ADDRESS OFFSET
31 26 25 21 20 1615 1110 6 5 0
R-TYPE REG | ‘ REG2 DST ‘ SHIFT AMOUNT | ADD/AND/OR/SLT,
31 26 25 21 20 1615 1110 6 s 0
BEQENE REG | ‘ REG2 BRANCH ADDRESS OFFSET
31 26 25 21 20 1615 1110 6 5 0
‘ Jump ump ADDRESS
| |
Control 1500 Ny
- \
A
3126 D
|/D/
dod6,1y
20-00 U
— X
1511 WD
. .
oAl | M
uH E
st HLoho1sraz X M v
3100 L
REG FILE IADDR u
INST RD2 M M — X
IORY WA WD v u
MEMORY Lix Lk

LW: SW: R-Type: BR-Type: JMP-Type:
1.READ INST |1.READINST |1.READINST |1.READINST |1.READ
INST
2. READ REG 1 |2. READ REG 1 | 2. READ REG 1 | 2. READ REG 1 | 2.
READ REG 2 READ REG 2 READ REG 2 READ REG 2
3. ADDREG 1 +{3. ADD REG 1 +|3. OPERATE on | 3. SUBREG2 |3.
OFFSET OFFSET REG 1 /REG2 |from REG 1
4. READ MEM | 4. WRITE MEM | 4. 4. 4
5. WRITE REG2| 5. 5. WRITE DST | 5. 5
2
Fetch Unit
Branch Address
Jump Register Address
Jump Address
NPC
o INST
INST
MEMORY
4

Register Fetch Unit

(o N

-'* Contro/]\
3126
nee |
2000
2521 rat
RDI1 [
INST | —L—s]20-16 RA2
REG FILE
RD2

WA WD

ALU Operation and Branch Logic

Vl
I S >

INST 20-00

RDI
RD2 M M
u u
nabe

I—‘ Branch address

Reg Write Address
Write Data

ALU OUTPUT

Memory and Write back Stage

Pipeline Data Path Operation

—_—
WRITE DATA wD
M Data Read
E
M
M
ADDR| T*1ARDR U
— X
Data ALU
7
A program with data dependencies
« Consider the following program
add $t0, $t1, $t2
add $t1, $t0, $t3
and $t2, $t4, $t0
or $t3, $t1, $t0
sit $t4, $t2, $t3
« Problem with starting next instruction before first is finished
— dependencies that “go backward in time” are data hazards
9

Solution: Software Ne gs/Hardware Bubbles

« Have compiler guarantee no hazards
* Where do we insert the “no-ops” ?

sub $2, $1, $3
and $12, $2, $5

or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Problem: this really slows us down!
— Also, the program will always be slow even if a techniques like
forwarding is employed afterwards in newer version

« Hardware can detect dependencies and insert no-ops in hardware
— Hardware detection and no-op insertion is called stalling
— This is a bubble in pipeline and waste one cycle at all stages
— Need two or three bubbles between write and read of a register

| Control |
15-00) 1
\\ /)"’}
D
3126 >D/|—‘
1T v
20-00 U
X
| 15-11 WD
ZSVZIRA!RDI_’ __,[n_- ‘EA
INST — ——20-16 RA2 — X M =M
30 REG FILE [TtARDR ;J\
INST RD2 M M ———— -
MEMORY WA WD ':t LY
8
Data Path Operation
c o a c cs 3 <4 cs <3
REG ‘ ‘
”i-h MthORY
add $t0, $t1, $t
REG oal
”” EM)RY
add $tl, $t0, SIJ
INST REG /I:‘_’Q_ﬁ—l DATA
H:ILH FILE AEMORY
and $t2, $t4, aru
DATA
or $t3 $t1, $t0 -I
INST REG M
slt $t4, $t2, $t3 10
Stalled Operation (no write before read)
cs c6 7 c8 ()
n\%l REG m—l DATA
FETCH rn.: \MEmoRY I f
add $t0, $tl, $[
M
DATA Ul
MEMORY X
add $t1, $t0, $t3 12

Stalled Operation (write before read)

c1] cs c6 c7 cs

M
INST REG DATA N
FETCH] FILE MEMORY X

add $t0, $t1, St

il

T

[

“, DATA
E MEMORY.

Forwarding

« Use temporary results, don’t wait for them to be written
— register file forwarding to handle read/write to same register
— ALU forwarding
— May also need forwarding to memory (think!!)

“Time (in clock

cc1 ccz ccs cca cos cce cC7 CCB CCS

Value of register §2: 10 10 10 10 10-20 20 -20 -20 -20
Value of EXIMEM X X x -20 x x x x x
Value of MEMWB | X X X x “20 x x x x

execution order
(in instructions)
sub 52, 81,83

and $12, 52, 85

ors13, 36,

add $14, 52,

o W8S 52 was 5132

14
Forwarding
Regsters.
IFDRegsierRs
I IFIDRegsieR
[T Forgsar
16

i
and $t2, St4, $t0
13
Detecting Hazards for Forwarding
+ EX hazard
— If ((EX/MEM.RegWrite) and (EX/MEM.RegisterRd != 0) and
(EX/MEM.REgisterRd = ID/EX.RegisterRs)) ForwardA = 10
— If ((EX/MEM.RegWrite) and (EX/MEM.RegisterRd != 0) and
(EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10
* MEM hazard
— If ((MEM/WB.RegWrite) and (MEM/WB.REgisterRd != 0) and
(MEM/WB.REgisterRd = ID/EX.RegisterRs)) ForwardA = 01
— If ((MEM/WB.RegWrite) and (MEM/WB.REgisterRd != 0) and
(MEM/WB.REgisterRd = ID/EX.RegisterRt)) ForwardB = 10
« In case of Iw followed by a sw instruction, forwarding will not
work. This is because data in MEM stage are still being read
— Plan on adding forwarding in MEM stage of put a stall/bubble
« In case of Iw followed by an instruction that uses the value
— One has to add an stall
15
Can't always forward
« Load word can still cause a hazard:
— an instruction tries to read a register following a load instruction
that writes to the same register.
execution
i mstructions)
Iw $2,20($1)
and 55
or $8, $6
add s0, 54,52
sit$1, $6, 87
+ Thus, we need a hazard detection unit to “stall” the load instruction 17

Hazard Detection Unit

« Stall by letting an instruction that won’t write anything go forward

SR =

M
Ragisters M '
—— 1 e, "
A— [X

IFIDRegisterRs

FID RogiterRt
1FID RogistorRt e

U LT

4

=) [~

Branch Hazards

* When we decide to branch, other instructions are in the pipeline!

Program Time (in clock cycles)
execution cc1 cc2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

(in instructions)

40beq$1,93,7 I @II.’ Il—rn [req

44 and $12, 52, 85
48 or $13, 36, 52

52 add $14, 2, 52

72 1w $4, 50(87)

* We are predicting “branch not taken”
— need to add hardware for flushing instructions if we are wrong

Flushing Instructions

19
Improving Performance
« Try and avoid stalls! E.g., reorder these instructions:
1w $t0, 0($t1)
1w $t2, 4($tl)
sw $t2, 0($tl)
sw $t0, 4($tl)
« Add a “branch delay slot”
— the next instruction after a branch is always executed
— rely on compiler to “fill” the slot with something useful
« Superscalar: start more than one instruction in the same cycle
21

Other Issues in Pipelines

« Exceptions
— Errors in ALU for arithmetic instructions
— Memory non-availability
« Exceptions lead to a jump in a program
« However, the current PC value must be saved so that the program
can return to it back for recoverable errors

« Multiple exception can occur in a pipeline

* Preci of pti ion is important in some cases
« 1/0 exceptions are handled in the same manner

Handling Branches

« Branch Prediction
— Usually we may simply assume that branch is not taken
— Ifit is taken, then we flush the pipeline
 Clear control signals for instruction following branch
+ Delayed branch
— Fill instructions that need to be executed even if branch occur
— If none available fill NOOPs
* Reduce delay in resolving branches
— Compare at register stage
— Branch prediction table
« PC value (for branch) and next address

« One or two bits to store what should be prediction

23

22
Two State vs Four State Branch Prediction
« Two state model
« Four State Model
Taken .@
Not Taken Not Taken
24

Pipeline with Early Branch Resolution/Exception

Superscalar Architecture

A Modern Pipelined Microprocessor

I
[[Tty " Homervatian, m..-.n.-l.u. " Hemervatian ” u.....:-..-.l

el | el el e
|
e
=

5T

Commst
st

eardar
batTar

27

Important Facts to Remember

« Pipelined processors divide the execution in multiple steps
« However pipeline hazards reduce performance
— Structural, data, and control hazard
« Data forwarding helps resolve data hazards
— But all hazards cannot be resolved
— Some data hazards require bubble or noop insertion
« Effects of control hazard reduced by branch prediction

— Predict always taken, delayed slots, branch prediction
table

— Structural hazards are resolved by duplicating resources

28

Execution Time

« Time of n instructions depends on
— Number of instructions n
— # of stages k
— # of control hazard and penalty of each step
— # of data hazards and penalty for each
+ Time =n +k -1 + load hazard penalty + branch penalty
* Load hazard penalty is 1 or 0 cycle
— depending on data use with forwarding
« branch penalty is 3, 2, 1, or zero cycles depending on scheme

29

Design and Performance Issues With Pipelining

« Pipelined processors are not EASY to design

« Technology affect implementation

« Instruction set design affect the performance, i.e., beq, bne
« More stages do not lead to higher performance

3.0

Relafive performance
n

Pipeline dopth

30

