
1

Instruction Format

31 26 25 21 20 16 15 11 10 6 5 0

JUMP JUMP ADDRESS

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2BEQ/BNE BRANCH ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2SW STORE ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2LW LOAD ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

2

Operation for Each Instruction

LW:

1. READ INST

2. READ REG 1

READ REG 2

3. ADD REG 1 +
OFFSET

4. READ MEM

5. WRITE REG2

SW:

1. READ INST

2. READ REG 1

READ REG 2

3. ADD REG 1 +
OFFSET

4. WRITE MEM

5.

R-Type:

1. READ INST

2. READ REG 1

READ REG 2

3. OPERATE on
REG 1 / REG 2

4.

5. WRITE DST

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

3. SUB REG 2
from REG 1

4.

5.

JMP-Type:

1. READ

INST

2.

3.

4.

5.

3

Pipeline Data Path Operation

P
C

4 A
D
D

INST
MEMORY

IA

INST
31-00

M
U
X M

U
X

M
U
X

Control

20-00

31-26

REG FILE

25-21 RA1

20-16 RA2

RD1

RD2
WA WD

M
U
X

Sign
Ext

Shift
Left

2

M
U
X

M
U
X

M
U
X

20-16

15-11

A
L
U

A
D
D

15-00

M
U
X

M
E
M

WD

ADDR

4

Fetch Unit

P
C

4 A
D
D

INST
MEMORY

IA

INST
31-00

M
U
X M

U
X

M
U
X

NPC

INST

Jump Address
Jump Register Address

Branch Address

5

Register Fetch Unit

Control

20-00

31-26

REG FILE

25-21 RA1

20-16 RA2

RD1

RD2
WA WD

NPC

INST

6

ALU Operation and Branch Logic

M
U
X

Sign
Ext

Shift
Left

2

M
U
X

M
U
X

M
U
X

20-16

15-11

A
L
U

A
D
D

15-00

RD1

RD2

INST 20-00

Branch address

Reg Write Address
Write Data

ALU OUTPUT

7

Memory and Write back Stage

M
U
X

M
E
M

WD

ADDR

WRITE DATA

ADDR

Data Read

Data ALU

8

Pipeline Data Path Operation

P
C

4 A
D
D

INST
MEMORY

IA

INST
31-00

M
U
X M

U
X

M
U
X

Control

20-00

31-26

REG FILE

25-21 RA1

20-16 RA2

RD1

RD2
WA WD

M
U
X

Sign
Ext

Shift
Left

2

M
U
X

M
U
X

M
U
X

20-16

15-11

A
L
U

A
D
D

15-00

M
U
X

M
E
M

WD

ADDR

9

• Consider the following program

add $t0, $t1, $t2
add $t1, $t0, $t3
and $t2, $t4, $t0
or $t3, $t1, $t0
slt $t4, $t2, $t3

• Problem with starting next instruction before first is finished
– dependencies that “go backward in time” are data hazards

A program with data dependencies

10

Data Path Operation

C1 C2 C3 C4 C5 C6 C7 C8 C9

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

add $t0, $t1, $t2

add $t1, $t0, $t3

and $t2, $t4, $t0

or $t3, $t1, $t0

slt $t4, $t2, $t3

11

• Have compiler guarantee no hazards
• Where do we insert the “no-ops” ?

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Problem: this really slows us down!
– Also, the program will always be slow even if a techniques like

forwarding is employed afterwards in newer version

• Hardware can detect dependencies and insert no-ops in hardware
– Hardware detection and no-op insertion is called stalling
– This is a bubble in pipeline and waste one cycle at all stages
– Need two or three bubbles between write and read of a register

Solution: Software No- ops/Hardware Bubbles

12

Stalled Operation (no write before read)

C1 C2 C3 C4 C5 C6 C7 C8 C9

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

add $t0, $t1, $t2

add $t1, $t0, $t3

add $t1, $t0, $t3

add $t1, $t0, $t3

add $t1, $t0, $t3

13

Stalled Operation (write before read)

C1 C2 C3 C4 C5 C6 C7 C8 C9

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

add $t0, $t1, $t2

add $t1, $t0, $t3

add $t1, $t0, $t3

and $t2, $t4, $t0

add $t1, $t0, $t3

14

• Use temporary results, don’t wait for them to be written
– register file forwarding to handle read/write to same register
– ALU forwarding
– May also need forwarding to memory (think!!)

Forwarding

what if this $2 was $13?

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program�
execution order�
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

DM

15

• EX hazard
– If ((EX/MEM.RegWrite) and (EX/MEM.RegisterRd != 0) and

(EX/MEM.REgisterRd = ID/EX.RegisterRs)) ForwardA = 10
– If ((EX/MEM.RegWrite) and (EX/MEM.RegisterRd != 0) and

(EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

• MEM hazard
– If ((MEM/WB.RegWrite) and (MEM/WB.REgisterRd != 0) and

(MEM/WB.REgisterRd = ID/EX.RegisterRs)) ForwardA = 01
– If ((MEM/WB.RegWrite) and (MEM/WB.REgisterRd != 0) and

(MEM/WB.REgisterRd = ID/EX.RegisterRt)) ForwardB = 10

• In case of lw followed by a sw instruction, forwarding will not
work. This is because data in MEM stage are still being read
– Plan on adding forwarding in MEM stage of put a stall/bubble

• In case of lw followed by an instruction that uses the value
– One has to add an stall

Detecting Hazards for Forwarding

16

Forwarding

PC Instruction�
memory

Registers

M�
u�
x

M�
u�
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data�
memory

M�
u�
x

Forwarding�
unit

IF/ID
In

st
ru

ct
io

n

M�
u�
x

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

17

• Load word can still cause a hazard:
– an instruction tries to read a register following a load instruction

that writes to the same register.

• Thus, we need a hazard detection unit to “stall” the load instruction

Can't always forward

Reg

IM

R eg

Reg

IM

C C 1 C C 2 C C 3 CC 4 C C 5 C C 6

T im e (in c lock cyc les)

lw $2, 20 ($1)

Program �
execu tion�
order�
(in ins tructions)

and $4 , $2, $5

IM Reg D M Reg

IM DM R eg

IM D M R eg

CC 7 C C 8 C C 9

or $8 , $2, $6

add $9 , $4, $2

slt $1, $6 , $7

DM R eg

R eg

R eg

DM

18

Hazard Detection Unit

• Stall by letting an instruction that won’t write anything go forward

PC Instruction�
memory

Registers

M�
u�
x

M�
u�
x

M�
u�
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data�
memory

M�
u�
x

Hazard�
detection�

unit

Forwarding�
unit

0

M�
u�
x

IF/ID

In
st

ru
ct

io
n

ID/EX.MemRead

IF
/ID

W
rit

e

PC
W

rit
e

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRs

Rt
Rs

Rd

Rt EX/MEM.RegisterRd

MEM/WB.RegisterRd

19

• When we decide to branch, other instructions are in the pipeline!

• We are predicting “branch not taken”
– need to add hardware for flushing instructions if we are wrong

Branch Hazards

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program�
execution�
order�
(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg

20

Flushing Instructions

21

Improving Performance

• Try and avoid stalls! E.g., reorder these instructions:

lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

• Add a “branch delay slot”
– the next instruction after a branch is always executed
– rely on compiler to “fill” the slot with something useful

• Superscalar: start more than one instruction in the same cycle

22

Other Issues in Pipelines

• Exceptions
– Errors in ALU for arithmetic instructions
– Memory non-availability

• Exceptions lead to a jump in a program
• However, the current PC value must be saved so that the program

can return to it back for recoverable errors
• Multiple exception can occur in a pipeline
• Preciseness of exception location is important in some cases
• I/O exceptions are handled in the same manner

23

Handling Branches

• Branch Prediction
– Usually we may simply assume that branch is not taken
– If it is taken, then we flush the pipeline

• Clear control signals for instruction following branch
• Delayed branch

– Fill instructions that need to be executed even if branch occur
– If none available fill NOOPs

• Reduce delay in resolving branches
– Compare at register stage
– Branch prediction table

• PC value (for branch) and next address
• One or two bits to store what should be prediction

24

Two State vs Four State Branch Prediction

• Two state model

• Four State Model

Predict
Taken

Predict
Not

TakenTaken
Not Taken

Not TakenTaken

Predict
Not

Taken

Predict
Not

TakenTaken

Not Taken

Not Taken

Taken

Predict
Taken

Predict
TakenTaken

Not Taken

Not TakenTaken

25

Pipeline with Early Branch Resolution/Exception

26

Superscalar Architecture

27

A Modern Pipelined Microprocessor

28

Important Facts to Remember

• Pipelined processors divide the execution in multiple steps
• However pipeline hazards reduce performance

– Structural, data, and control hazard
• Data forwarding helps resolve data hazards

– But all hazards cannot be resolved
– Some data hazards require bubble or noop insertion

• Effects of control hazard reduced by branch prediction
– Predict always taken, delayed slots, branch prediction

table
– Structural hazards are resolved by duplicating resources

29

Execution Time

• Time of n instructions depends on
– Number of instructions n
– # of stages k
– # of control hazard and penalty of each step
– # of data hazards and penalty for each

• Time = n + k - 1 + load hazard penalty + branch penalty
• Load hazard penalty is 1 or 0 cycle

– depending on data use with forwarding
• branch penalty is 3, 2, 1, or zero cycles depending on scheme

30

Design and Performance Issues With Pipelining

• Pipelined processors are not EASY to design
• Technology affect implementation
• Instruction set design affect the performance, i.e., beq, bne
• More stages do not lead to higher performance

