
1

Virtual Memory

• Main memory can act as a cache for the secondary storage (disk)

• Advantages:
– illusion of having more physical memory
– program relocation
– protection

Physical addresses

Disk addresses

Virtual addresses
Address translation

2

Pages: virtual memory blocks

• Page faults: the data is not in memory, retrieve it from disk
– huge miss penalty, thus pages should be fairly large (e.g., 4KB)
– reducing page faults is important (LRU is worth the price)
– can handle the faults in software instead of hardware
– using write-through is too expensive so we use writeback

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

3

Page Tables

Physical memory

Disk storage

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Virtual page�
number

Physical page or�
disk address

4

Page Tables

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not�
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

5

Making Address Translation Fast

• A cache for address translations: translation lookaside buffer

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table

Physical page�
addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page�

number

Physical page�
or disk address

Physical memory

Disk storage

6

TLBs and Caches

Yes

Deliver data�
to the CPU

Write?

Try to read data�
from cache

Write data into cache,�
update the tag, and put�

the data and the address�
into the write buffer

Cache hit?Cache miss stall

TLB hit?

TLB access

Virtual address

TLB miss�
exception

No

YesNo

YesNo

Write access�
bit on?

�

YesNo

Write protection�
exception

Physical address

7

• Replacement Policies in Multi-way Set Associative caches
– Random: Replace any line arbitrarily
– Least Recently Used (LRU): Find the least recently used line to

replace
– Keep Most Recently Used (MRU): Keep the last used line in the set

and replace any other randomly
• LRU performs the best
• MRU does equally well

Replacement Policies

8

• We explain LRU with an example of a 4-way set associative cache
• Associate a 2-bit counter with each line (log k bit for k-way cache)
• Initially all lines are invalid
• For a miss bring a new line in an invalid line, make it valid, set its

counter to zero, increment all other counters
– If no invalid line, replace the line with counter value = 3, set its

counter to zero, increment all other counters
• For a hit, set the accessed line’s counter to zero and increment

counters of those lines whose values is smaller than the accessed line
• Try this algorithm for an examples where lines read are 0, 64, 128, 64,

192, 256, 128, 0, 256, 192, 64…
– There are 64 lines in each cache and it is 4-way set associative

LRU Scheme

9

• Check the address in TLB
• If not there, get the physical translation and also store the entry in TLB

– Penalty 40-50 cycles
• If page itself is not present, page fault occurs

– Read the page, update page table and TLB
– Penalty 100’s of thousands cycles

• Once physical address is there If there, perform read or write in cache
• If cache miss

– Read the line in cache for read
– May need to replace a dirty or clean line

• Penalty 20-40 cycles
– For Write read the line if write allocate, else write around

• If cache hit read or write in cache
– Also write in main memory if write through

Reading or Writing a Memory word

10

• Instruction Frequency: LW(20%), SW(10%), R(50%), BR(15%), J(5%)
• Branch Penalty: 3 cycles on 20% mis-predictions = 15*0.20*3 = 9 cycles
• Data Cache 1: Miss rate 10% (of load/store), write back, write around,

50% dirty replacement, penalty for reading or writing a line 20 cycles
– Load penalty = 20*0.10*0.50*20 + 20*0.10*0.50*(20+20) = 60 cycles
– Store Penalty = 0 (because of write around, otherwise will be 30)

• Data Cache 2: Miss rate 5% (of load/store), write back, write allocation,
50% dirty replacement, penalty for reading or writing a line 100 cycles
– Load penalty = 20*0.05*0.5*100 + 20*0.05*0.5*(100+100) = 150 cycles
– Store Penalty = 10*0.05*0.5*100 + 10*0.05*0.5*(100+100) = 75 cycles

• TLB: Miss Rate 2% (of load/store), Miss Penalty 100 cycles
– Total Penalty = (20+10)*0.02*100 = 60 cycles

• Page faults: 0.01% (of load/store), Penalty 300,000 cycles
– Total Penalty = (20+10)*0.0001*300,000 = 900 cycles

• Total Time = 100+9+60+150+75+60+900 = 1354 cycles, or CPI=13.54
• Notice that miss rates can be spacified per instruction or per load/store

A Big Example

11

• 3 C Misses
– Compulsory: Miss will have to occur on first read (or write)
– Capacity: A line is replaced and then brought back
– Conflict: a miss occurs as some other line is occupying that line

• Example Suppose we read line a first time (no line is in cache), then
read line b that replaces line a, and then read line a again

• The first and second misses are compulsory, second miss is also
capacity and conflict, and the third miss is capacity (and also conflict)

• The terminology can be confusing here
– The first read is always classified as compulsory
– The replacement and read back is conflict if there was place in

cache elsewhere but you had to bring it at that place due to mapping
– If there was no place at all then it is capacity miss (like cache is full

in a fully associative cache)

Misses and Replacement Policies

12

• In a single-level translation
– 32 bit virtual address
– 4KB Page size (12 bit address in each page)
– Leaves 20-bit page address => 1 Million Pages =>4MB for Table

• One alternate is to only have a limited size page table with Hi and Lo
Checks
– But program use many addresses segments

• Alternate is to have a two level page table
• Divide page addresses in two parts of 10 bits each

– There are 1K tables of 1K entries each (total is still 1M entries)
– Most significant 10 bits points to a table (with 1K entries, each 4

bytes long, a total of 4KB that fits in a page) that contains the
address of that part of table

– Least significant 10 bits are used to access a particular entry in the
selected table

• We only need to keep the first table (pointing to real tables) and some
of the second level tables in memory

Virtual Memory: Other Translation Schemes

13

Modern Systems
• Very complicated memory systems:

Characteristic Intel Pentium Pro PowerPC 604
Virtual address 32 bits 52 bits
Physical address 32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, selectable, and 256 MB
TLB organization A TLB for instructions and a TLB for data A TLB for instructions and a TLB for data

Both four-way set associative Both two-way set associative
Pseudo-LRU replacement LRU replacement
Instruction TLB: 32 entries Instruction TLB: 128 entries
Data TLB: 64 entries Data TLB: 128 entries
TLB misses handled in hardware TLB misses handled in hardware

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through

14

• Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times

• Design challenge: dealing with this growing disparity

• Trends:
– synchronous SRAMs (provide a burst of data)
– redesign DRAM chips to provide higher bandwidth or processing
– restructure code to increase locality
– use prefetching (make cache visible to ISA)

Some Issues

