Virtual Memory Pages: virtual memory blocks

« Main memory can act as a cache for the secondary storage (disk) « Page faults: the data is not in memory, retrieve it from disk

— huge miss penalty, thus pages should be fairly large (e.g., 4KB)
— reducing page faults is important (LRU is worth the price)

e R — — can handle the faults in software instead of hardware

— using write-through is too expensive so we use writeback

3130202827 15141312 111098 3210
—

[[— [o]

« Advantages: ‘

Physcal page mumber reats |
Physialaddress
— illusion of having more physical memory
— program relocation
— protection
1
Page Tables Page Tables
[Page bl rogsler]
Vituat acarsss
i 313020227 oriniiens 514132 111088 3210
Prysetpoge o Prysal momary Vil page rrnber ‘ Pagootsat ‘
Vaid " do adiross
g @
Vaig Physcspage umber
— T
I
1
I
|
Pagetable | |1
— ~
7 1
— 0
L 10 thenpage rot
‘l:ll:| resent s oy
— 2928 27 cerereesennenenecfeis 151413 1211100 8-:].- 3210
Physc!poge number ‘ Pagoosat
[r—
3

Making Address Translation Fast TLBs and Caches

* A cache for address translations: translation lookaside buffer

Virualaddress

vinua page

Physcal page
mber Vel Tag ey
[N Physica momor
y 2 T8 s
- excepion
< ~ At
Page table
Physcalpage
o1 o ol adress Try o road data
< from cache
Dis sorago
s — updte
< Gache mis st 1o data and tho address
n nto ho wita buffr
S [E— Dalver data
[o [1 tothe CPU
ra S —

Replacement Policies

+ Replacement Policies in Multi-way Set Associative caches
— Random: Replace any line arbitrarily
— Least Recently Used (LRU): Find the least recently used line to
replace

— Keep Most Recently Used (MRU): Keep the last used line in the set
and replace any other randomly

+ LRU performs the best
+ MRU does equally well

LRU Scheme

« We explain LRU with an example of a 4-way set associative cache
« Associate a 2-bit counter with each line (log k bit for k-way cache)
« Initially all lines are invalid
« For a miss bring a new line in an invalid line, make it valid, set its
counter to zero, increment all other counters
— If no invalid line, replace the line with counter value = 3, set its
counter to zero, increment all other counters
« For a hit, set the accessed line’s counter to zero and increment
counters of those lines whose values is smaller than the accessed line
+ Try this algorithm for an examples where lines read are 0, 64, 128, 64,
192, 256, 128, 0, 256, 192, 64...
— There are 64 lines in each cache and it is 4-way set associative

Reading or Writing a Memory word

* Check the address in TLB
« If not there, get the physical translation and also store the entry in TLB
— Penalty 40-50 cycles
« If page itself is not present, page fault occurs
— Read the page, update page table and TLB
— Penalty 100’s of thousands cycles
+ Once physical address is there If there, perform read or write in cache
« If cache miss
— Read the line in cache for read
— May need to replace a dirty or clean line
* Penalty 20-40 cycles
— For Write read the line if write allocate, else write around
« If cache hit read or write in cache
— Also write in main memory if write through

A Big Example

+ Instruction Frequency: LW(20%), SW(10%), R(50%), BR(15%), J(5%)
« Branch Penalty: 3 cycles on 20% mis-predictions = 15*0.20*3 = 9 cycles
« Data Cache 1: Miss rate 10% (of load/store), write back, write around,
50% dirty repl it | Ity for reading or writing a line 20 cycles
— Load penalty = 20*0.10*0.50*20 + 20*0.10*0.50*(20+20) = 60 cycles
— Store Penalty = 0 (because of write around, otherwise will be 30)
« Data Cache 2: Miss rate 5% (of load/store), write back, write allocation,
50% dirty replacement, penalty for reading or writing a line 100 cycles
— Load penalty = 20*0.05*0.5*100 + 20*0.05*0.5*(100+100) = 150 cycles
— Store Penalty = 10*0.05*0.5*100 + 10*0.05*0.5*(100+100) = 75 cycles
« TLB: Miss Rate 2% (of load/store), Miss Penalty 100 cycles
— Total Penalty = (20+10)*0.02*100 = 60 cycles
« Page faults: 0.01% (of load/store), Penalty 300,000 cycles
— Total Penalty = (20+10)*0.0001*300,000 = 900 cycles
+ Total Time = 100+9+60+150+75+60+900 = 1354 cycles, or CPI=13.54
« Notice that miss rates can be spacified per instruction or per load/store

10

Misses and Replacement Policies

* 3C Misses
— Compulsory: Miss will have to occur on first read (or write)
— Capacity: Aline is replaced and then brought back
— Conflict: a miss occurs as some other line is occupying that line
« Example Suppose we read line a first time (no line is in cache), then
read line b that replaces line a, and then read line a again
« The first and d mi are pulsory, d miss is also
capacity and conflict, and the third miss is capacity (and also conflict)
« The terminology can be confusing here
— The first read is always classified as compulsory
— The replacement and read back is conflict if there was place in
cache elsewhere but you had to bring it at that place due to mapping

— If there was no place at all then it is capacity miss (like cache is full
in a fully associative cache)

Virtual Memory: Other Translation Schemes

« In asingle-level translation
— 32 bit virtual address
— 4KB Page size (12 bit address in each page)
— Leaves 20-bit page address => 1 Million Pages =>4MB for Table

+ One alternate is to only have a limited size page table with Hi and Lo
Checks

— But program use many addresses segments
« Alternate is to have a two level page table
« Divide page addresses in two parts of 10 bits each

— There are 1K tables of 1K entries each (total is still 1M entries)

— Most significant 10 bits points to a table (with 1K entries, each 4
bytes long, a total of 4KB that fits in a page) that contains the
address of that part of table
Least significant 10 bits are used to access a particular entry in the
selected table
+ We only need to keep the first table (pointing to real tables) and some

of the second level tables in memory

Modern Systems

+ Very complicated memory systems:

Intel Pentium Pro

PowerPC 604

Virtual address |32 bits

52 bits

Physical address {32 bit

32 bits

Page si, 4 KB, 4 MB

4 KB, selectable, and 256 MB

TLB misse:

TLB organization |A TLB for instructions and a TLB for data
Both four-way set associative
Pseudo-LRU replacement

Instruction TLB: 32 entries

Data TLB: 64 entries

handled in hardware

[A TLB for instructions and a TLB for data
Both two-way set associative

LRU replacement

Instruction TLB: 128 entries

Data TLB: 128 entries

TLB misses handled in hardware

Intel Pentium Pro PowerPC 604
Cache plit instruction and data caches |Split intruction and data cache:
Cache size 8 KB each for i 16 KB each for T
Cache Four-way set Four-way set
LRU LRU
Block size 32 bytes 32 bytes
Write policy [Write-back \Write-back or write-through

Some Issues

« Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times

« Design challenge: dealing with this growing disparity

« Trends:
— synchronous SRAMs (provide a burst of data)
— redesign DRAM chips to provide higher bandwidth or processing
— restructure code to increase locality
— use prefetching (make cache visible to ISA)

