
1

Designing a bus system

• A bus need to support 
– cache-memory traffic
– I/O-memory traffic
– Processor-I/O traffic

• The first one depends on cache miss rate and replacement
• The number of cycles for each transaction is to read a new line or 

write a dirty line back
• For disk, each disk controller may support many disks
• Disk controller is busy to initiate a transfer and to transfer data 

to/from memory for the actual data transfer (as opposed to whole
transaction) operation (so 1-2 ms out of 15 ms or so in our earlier 
example)

• Bus is only busy during actual transfer
• Disk controller may transfer in burst mode (multiple bytes in one 

transaction) 2

Designing a bus system (Continued)

• The bus should not be designed to keep it busy 100% of the time
• Suppose a bus takes 200 processor cycles to transfer a 4-word (16-

bytes) block in and out of memory (assume a 200 MHz processor)
• Then it will take (4K/16)*200 = 50,000 cycles (it is really is a bit more, 

but we are simplifying) to transfer a 4K byte block
• Processor and controller may take an additional 50,000 cycles to

establish a transfer and complete it
• They may use the bus for 10,000 cycle
• A 4KB transfer keeps disk busy for 15ms (3,000,000 cycles)
• A 4KB transfer keeps disk controller busy for 100,000 cycles
• A 4KB transfer keeps processor busy for 50,000 cycles
• A 4KB transfer keeps bus busy for 60,000 cycles
• A New line (32 bytes) fetch keeps the bus busy for 200 cycles
• A dirty line (32 bytes) write keeps the bus busy for 400 cycles

3

Designing a bus system (Continued)

• Each disk can support 1sec/15ms = 66  4KB transfers/sec
• Each controller can support 200M/100,000 = 2000 transfers/sec
• Each controller can support 2000/66 = 30 disks
• A processor can support 200M/50,000 = 4000 transfers/sec
• However, the processor should not be busy with disk only
• With 25% processor capacity, it can only support 1000 transfers/sec
• Or number of disk that can be kept busy is 1000/66 = 15
• The bus can support 200M/60,000 = 3333 transfers/sec
• Or it can support 3333/66 = 50 disks
• However, the bus should not be loaded, say, more than 25% times 

with disk load, so it can really support only 12 disks
• The number of disks is decided based on the critical resource
• BUS HAS TO SUPPORT CACHE TRAFFIC BASED ON MISS RATE

4

Exceptions

• Exceptions are just that – Changes in the normal execution of a 
program

• Two types of exceptions
– External Condition: I/O interrupt, power failure, user termination 

signal (Ctrl-C)
– Internal Condition: Bad memory read address (not a multiple of 

4), illegal instructions, overflow/underflow.
• Interrupts – external
• Exceptions – internal
• Usually we can refer to both by the general term “Exception” though.
• In either case, we need some mechanism by which we can handle the 

exception generated.

5

How Exceptions are Handled

• We need two special registers
– EPC: 32 bit register to hold address of current instruction
– Cause: 32 bit register to hold information about the type of 

exception that has occurred.
• Simple Exception Types

– Undefined Instruction
– Arithmetic Overflow

• Another type is Vectored Interrupts
– Do not need cause register
– Appropriate exception handler jumped to from a vector table

6

Two new states for the Multi-cycle CPU

IntCause=1
CauseWrite
ALUSrcA=0
ALUSrcB=01
ALUOp=01
EPCWrite
PCWrite
PCSource=11

Overflow

11

From State 7

10

From State 1

IntCause=0
CauseWrite
ALUSrcA=0
ALUSrcB=01
ALUOp=01
EPCWrite
PCWrite
PCSource=11

Undefined
Instruction



7

Exceptions and Pipelined Processors

• The pipelined processor must also have some mechanism to handle 
exceptions

• Fortunately, the pipelining will not make exceptions much more 
difficult

• Look at p. 506 for datapath with exception handling
– Added 40000040 as another input for PC (the exception handler 

address)
– EPC and Cause register are added to datapath

8

Virtual Memory and Exceptions

• Virtual Memory TLB Misses
– Page is just not in TLB

• Bring page information into TLB
– Page is not in Main Memory

• Page Fault requires OS to intervene
• Exception – Page Fault

9

Handling a Page Fault

1) Look up the page table entry corresponding to the virtual address to 
find the location of the referenced page on disk

2) Choose a page in main memory to replace
• If that page has been written to in the past (dirty bit is set)

• Recopy the page back to the disk
3) Move the new page into main memory from the disk

• Step 2 may be very slow if page to be replaced is dirty
• Step 3 will take millions of clock cycles to complete
• So push this process to the side temporarily and do other 

meaningful work
• Then later we can return from the exception handler and continue

the program execution

10

Exceptions in the Exception Handler

• Problem: What if another exception occurs within the exception 
handler itself?
– Impossible to return to initial exception location, since EPC will 

be overwritten
• Solution: Have the ability to turn off exception handling.

– Set a bit that can disable other exceptions from affecting 
execution

11

I/O Devices and Exceptions

• I/O devices will generate interrupts to notify the processor
• Who will handle these interrupts?

– Operating System

• Provides interface to system I/O devices, so you don’t 
need to do all low-level operations

• Provide some fairness in resource usage, as well as 
scheduling to improve throughput

• Memory Mapped I/O versus Dedicated I/O instructions

12

Communication with I/O Devices

• Reading and Writing to devices usually requires several steps
• Status Registers

– Hold information pertaining to the state of the device
– Done bit or Error bit, etc.
– May also be written to for notifying device when the data input is 

ready
• Data Registers

– Buffers for information
– Examples: character to be printed, Ethernet packet, etc.
– Some are only readable, others are only writeable. Sometimes 

they are both R/W.
• User I/O is managed by the supervisor (kernel) level, since the 

device address space is not usually available to a user



13

Polling versus Interrupt-driven I/O

• Polling
– Processor must check whether or not I/O device has new 

meaningful information
– Large overhead costs
– Still sees some use though with very slow devices that are 

routinely used (e.g. mouse)
• Interrupt-driven I/O

– I/O device will notify processor by way of interrupt to request 
services

– Not synchronous with instructions
– Vectored Interrupts or EPC
– Can have various interrupt levels to show priority

14

Direct Memory Access (DMA)

• Memory/Device data transfers without constant use of the processor
• DMA is the bus master, thus it directs the traffic
• DMA Transfer

– Processor must inform DMA of operation to perform along with 
the various parameters (e.g. device address, source address, 
destination address, bytes to transfer, …)

– DMA starts the transfer and controls the bus, performing the 
requested operation

– When the operation is done, the DMA controller sends an 
interrupt to the CPU to let it know the status of the transfer

• There can be many DMA’s in the same system
• Difficulties with virtual address translation

– Coherency problem

15

MIPS Exception Related Information

• Coprocessor 0 is used for exceptions in MIPS
• P. A-32 in the textbook
• 4 registers accessible by lwc0, mfc0, mtc0, swc0
• MIPS uses $k0 and $k1 as kernel registers for exception handling

Address of exception-
causing instruction

14EPC

Exception type and 
pending interrupt bits

13Cause

Interrupt mask and 
enable bits

12Status

Memory address at 
which the reference 
occurred

8BadVAddr

UsageRegister NumberRegister Name

16

Review Material

• On Final Exam Key Points:
– Number of cycles = n + k - 1 + bubbles
– Forwarding unit does not insert bubbles
– Hazard detection unit will insert bubble for anything that cannot 

be taken care by forwarding
– Design of data placement algorithms for efficient caching
– Distinction between design issues vs. programming issues

• Multi-way set associativity is design
• Placing data appropriately is programming 

• Memory Design will be a key issue
• Include caching, virtual memory
• And finally, I/O will be the major issue
• It is comprehensive 
• Good Luck

17

Concluding Remarks

• Evolution vs. Revolution

“More often the expense of innovation comes from being too 
disruptive to computer users”

“Acceptance of hardware ideas requires acceptance by 
software people; therefore hardware people should learn 
about software.  And if software people want good machines, 
they must learn more about hardware to be able to 
communicate with and thereby influence hardware 
engineers.”


