
CPRE 381 Lab 3
Module Reuse – Multipurpose Shifter

In this lab you will develop a 32-bit multipurpose shifter based on modules you build in
Lab 1.

1-bit Shifter

1. Start by designing a 1-bit shifter module that you will be able to reuse for a larger
design. Your module should have three 1-bit inputs (in, left, right), one 2-bit
input (selector), and one output (out). When the selector is “01” it shifts to the
left, and when “10” it shifts to the right. For other values of the selector no shift
is performed. (Note: A left shift means that when looking at a string of values
(MSB to the left, LSB to the right) the data will shift toward the MSB. This means
that the output of the current bit will be the input value of the bit to the immediate
right. A right shift will move the date toward the LSB and the current bit output
will be the input value of the bit to the immediate left.) Be careful to draw your
design and label your inputs with respect to the proper function.

2. Implement your design in verilog.
3. Verify that your design works as expected.

16-bit Multipurpose shifter

There are several different shifts that can be performed with a single hardware unit.
These shifts have slightly different behaviors and are used for various purposes.

A logical shift simply takes the input and shifts it to the right or left. The bits that are
shifted off the end of the structure are simply discarded. The bits that need to be filled on
the other end are set to zero. For your shifter, the shift amount is only one bit, so one bit
will be discarded and one bit will be set to 0. A shift-in bit can also be specified as an
input and is useful when chaining multiple shifters to make a larger shifter. In this case a
shift-out bit should also be specified as an output. The shift-in is used in place of a 0 for
the bit to be filled in.

An arithmetic shift is similar to a logic shift except that it maintains a sign bit. Thus if
the MSB is a 1 before the shift (the input value is negative) it will still be a 1 after the
shift regardless of the shift direction. The same holds true for an MSB of 0. The MSB
will not change during an arithmetic shift. An arithmetic shift left can have a shift-in bit
other than 0, but an arithmetic shift right has no shift-in bit.

A third shift function is a rotate. A rotate is just like it sounds and no bits are discarded.
The MSB is propagated to the LSB in a shift left and vice-versa in a shift right.

Finally, a shifter can be used as a component in a larger function to develop
multiplication and division algorithms. This will be covered in more detail later and in

this lab you can consider the additional inputs to support these algorithms as alternate
shiftin values.

Now it is time to reuse the 1-bit shifter to make a more useful functional unit to
implement several types of shift operations.

1. Design a 16-bit shifter using a 1-bit shift module to implement the functions as
shown in the table below. Verify that you have all of the correct inputs and
outputs identified. You should have a 16-bit input (a), a 16-bit output (out), a 4-
bit input for selection (sel), three additional 1-bit inputs for special operations
(shiftin, dv,ms), and a 1-bit output for cascading (shiftout).

2. Implement your design in verilog.
3. Verify that your design works by testing multiple values for each of the possible

functions.

MSB a[n-1] LSB a[0] Selector sel[3:0] Output out[15:0]

Left Shift
a[n-2] shiftIn 0000 Logic shift left with shiftIn
a[n-2] 0 0001 Logic shift left
a[n-2] a[n-1] 0010 Rotate left
a[n-2] dv 0011 Divide shift left
a[n-1] shiftIn 0100 Arithmetic shift left with shiftIn
a[n-1] 0 0101 Arithmetic shift left
a[n-1] a[0] 0110 No shift
a[n-1] a[0] 0111 No shift

Right Shift
a[n-1] a[1] 1000 Arithmetic shift right
a[n-1] a[1] 1001 Arithmetic shift right
a[n-1] a[1] 1010 Arithmetic shift right
a[n-1] a[1] 1011 Arithmetic shift right
shiftIn a[1] 1100 Logic shift right with shiftIn

0 a[1] 1101 Logic shift right
a[0] a[1] 1110 Rotate right
ms a[1] 1111 Multiply shift right

32-bit shifter from 16-bit shifters

1. Design a 32-bit shifter to reuse your 16-bit design.
2. Implement your design in verilog.
3. Verify the 32-bit design works for all functions. Does anything need to be

modified?

