
CPRE 381 Lab 4
Sequential Logic – Register File

In this lab you will construct a design for a register file. Registers are sequential logic
devices that store values for later retrieval. The register file will require both sequential
logic as well as combinational logic devices implemented in Lab 1.

Part 1 – A simple register

1. Implement a verilog module for a single bit register that is positive-edge-
triggered. There should be a data input (d), a clock input (clk), a write-enable
input (we) and a data output (o).

2. Implement a verilog module for a single bit register that is negative-edge-
triggered.

3. Construct a module that has one instance of each register with the inputs tied
together and separate outputs.

4. Simulate the combined module showing the difference between the two types of
edge-triggering.

Part 2 – A full 16-bit register

1. Implement a design for a positive-edge-triggered 16-bit register. Please make
sure your 16-bit inputs and outputs are 16-bit buses and not individual 1-bit
signals.

2. Simulate the 16-bit register to verify it is working correctly.

Part 3 – The full register file

1. Implement a register file in verilog with
16 16-bit registers.

a. There should be one 16-bit data
input (write or destination register).

b. There should be two 16-bit data
outputs (read or operand registers).

c. There should be three address
inputs (how many bits each?), one for a write
register, and two for read registers.

d. There should be a clock input
and a write enable input.

2. Perform a simulation that shows all 16
registers can be written to and subsequently

read on either operand output (don’t set both operand addresses to the same
register at the same time).

Final check: Can all of the registers in the log file be accounted for in the register file
design?

R
egister File

WA WR

RA2 RA1

LD_DATA

DATA1

DATA2

