
CprE 381 Lab 8
Multi-Cycle Datapath Implementation

In this lab you will construct a multi-cycle datapath. You have learned that a single-cycle
implementation is an inefficient use of resources and a multi-cycle datapath is an
alternate implementation that increases the efficiency.

Part 1 – Control
The major difference between the single cycle datapath and the multi-cycle datapath is
the control unit. In the previous lab, the control unit was entirely combinational logic.
The multi-cycle datapath requires sequential logic to implement a state machine. The
control signals are now dependant on both the instruction being executed and the stage of
execution.

1. Implement a finite state machine shown in the following diagram to control the
multi-cycle datapath. A shell of a verilog FSM is provided to get you started.

PCWrite�
PCSource = 10

ALUSrcA = 1�
ALUSrcB = 00�
ALUOp = 01�
PCWriteCond�

PCSource = 01

ALUSrcA =1�
ALUSrcB = 00�
ALUOp= 10

RegDst = 1�
RegWrite�

MemtoReg = 0
MemWrite�
IorD = 1

MemRead�
IorD = 1

ALUSrcA = 1�
ALUSrcB = 10�
ALUOp = 00

RegDst=0�
RegWrite�

MemtoReg=1�
�

ALUSrcA = 0�
ALUSrcB = 11�
ALUOp = 00

MemRead�
ALUSrcA = 0�

IorD = 0�
IRWrite�

ALUSrcB = 01�
ALUOp = 00�

PCWrite�
PCSource = 00

Instruction fetch
Instruction decode/�

register fetch

Jump�
completion

Branch�
completionExecution

Memory address�
computation

Memory�
access

Memory�
access R-type completion

Write-back step

 (Op = 'LW') or (Op = 'SW') (Op = R-type)
(O

p =
 'B

EQ')

(O
p

=
'J

')

 (Op = 'SW
')

(O
p

=
'L

W
')

4

0
1

9862

753

Start

// Incomplete FSM implementation for above diagram
module CTRL(clk, rst, opcode,
 IRWrite, IorD, //…others omitted);
 // Input signals for control unit
 input clk, rst; input [5:0] opcode;
 // Output control signals
 output IRWrite, IorD;
 // State variables
 reg [3:0] state, next_state;
 // Registered output signals based on state
 reg IRWrite, IorD;

 // State assignment
 parameter [3:0]
 IFETCH = 0,
 DECODE = 1,
 MEMACCESS = 2,
 LW = 3,
 SW = 5,
 RTYPE_EXEC = 6,
 RTYPE_2 = 7;
 // other states omitted

// Change state when clock arrives
always @ (posedge clk or negedge rst)
begin
 if (!rst)
 state = IFETCH; // asynchronous reset
 else
 state = next_state; // normal state transition
end

// Determine next state from current state and opcode
always @ (opcode or state)
begin
 case (state)
 IFETCH: state_next = DECODE;
 DECODE: if (opcode == 6’h00) state_next =
RTYPE_EXEC;
 else if (opcode == 6’h35 || opcode == 6’h43)
state_next = MEMACCESS;
 MEMACCESS: if(opcode == 6’h35) state_next = LW;
 else if(opcode == 6’h43) state_next = SW;
 RTYPE_EXEC: state_next = RTYPE_COMP;
 RTYPE_COMP: state_next = IFETCH;
 // other states omitted
 endcase
end

// Assert output signals based on current state
assign IRWrite = (state == IFETCH) ? 1 : 0;

 assign IorD = (state == LW || state == SW) ? 1 : 0;

//Other signals omitted

end module

More information on the meaning of the various signals can be found in your book in
Figure 5.29 on page 324.

2. Test your finite state machine for all state transitions to ensure that the proper
control signals are asserted.

Part 2 – Complete Multi-Cycle Datapath

1. Combine the control you developed in Part 1 with the remaining components
necessary to construct a complete multi-cycle datapath. Use the diagram in
Figure 5.28 on page 323 in your book as a guide.

2. Test and evaluate the functionality of your multi-cycle datapath.

