
Floating Point (a brief look)

• We need a way to represent
– numbers with fractions, e.g., 3.1416
– very small numbers, e.g., .000000001
– very large numbers, e.g., 3.15576 × 109

• Representation:
– sign, exponent, significand: (–1)sign × significand × 2exponent

1

– more bits for significand gives more accuracy
– more bits for exponent increases range

• IEEE 754 floating point standard:
– single precision: 8 bit exponent, 23 bit significand
– double precision: 11 bit exponent, 52 bit significand

IEEE 754 floating-point standard

• Leading “1” bit of significand is implicit

• Exponent is “biased” to make sorting easier
– all 0s is smallest exponent all 1s is largest
– bias of 127 for single precision and 1023 for double precision
– summary: (–1)sign × (1+significand) × 2exponent – bias

• Example:

2

– decimal: -.75 = -3/4 = -3/22

– binary: -.11 = -1.1 x 2-1

– floating point: exponent = 126 = 01111110

– IEEE single precision: 10111111010000000000000000000000

Floating Point Complexities

• Operations are somewhat more complicated (see text)
• In addition to overflow we can have “underflow”
• Accuracy can be a big problem

– IEEE 754 keeps two extra bits, guard and round
– four rounding modes
– positive divided by zero yields “infinity”

3

– zero divide by zero yields “not a number”
– other complexities

• Implementing the standard can be tricky
• Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!

Floating Point Add/Sub

• To add/sub two numbers
– We first compare the two exponents
– Select the higher of the two as the exponent of result
– Select the significand part of lower exponent number and shift it right by

the amount equal to the difference of two exponent
– Remember to keep two shifted out bit and a guard bit

dd/ b th i if d i d di t ti d i f

4

– add/sub the signifand as required according to operation and signs of
operands

– Normalize significand of result adjusting exponent
– Round the result (add one to the least significant bit to be retained if the

first bit being thrown away is a 1
– Re-normalize the result

Floating Point Multiply

• To multiply two numbers
– Add the two exponent (remember access 127 notation)
– Produce the result sign as exor of two signs
– Multiple significand portions
– Results will be 1x.xxxxx… or 01.xxxx….

In the first case shift result right and adjust exponent

5

– In the first case shift result right and adjust exponent
– Round off the result
– This may require another normalization step

Floating Point Divide

• To divide two numbers
– Subtract divisor’s exponent from the dividend’s exponent

(remember access 127 notation)
– Produce the result sign as exor of two signs
– Divide dividend’s significand by divisor’s significand portions
– Results will be 1.xxxxx… or 0.1xxxx….

6

– In the second case shift result left and adjust exponent
– Round off the result
– This may require another normalization step

