Floating Point (a brief look)

+ We need away to represent
— numbers with fractions, e.g., 3.1416
— very small numbers, e.g., .000000001
— very large numbers, e.g., 3.15576 x 10°
* Representation:
— sign, exponent, significand: (-1)$9" x significand x 2exponent
— more bits for significand gives more accuracy
— more bits for exponent increases range
« |IEEE 754 floating point standard:
— single precision: 8 bit exponent, 23 bit significand
— double precision: 11 bit exponent, 52 bit significand

IEEE 754 floating-point standard

» Leading “1" bit of significand is implicit

» Exponentis “biased” to make sorting easier
— all 0s is smallest exponent all 1s is largest
— bias of 127 for single precision and 1023 for double precision
— summary: (=1)59" x (1+significand) x 2exponent-bias

* Example:

— decimal: -.75 = -3/4 = -3/22
— binary: -.11=-1.1x 2%
— floating point: exponent = 126 = 01111110

— |EEE single precision: 10111111010000000000000000000000

Floating Point Complexities

+ Operations are somewhat more complicated (see text)
« In addition to overflow we can have “underflow”
* Accuracy can be a big problem
— |EEE 754 keeps two extra bits, guard and round
— four rounding modes
— positive divided by zero yields “infinity”
— zero divide by zero yields “not a number”
— other complexities
+ Implementing the standard can be tricky
« Not using the standard can be even worse
— see text for description of 80x86 and Pentium bug!

Floating Point Add/Sub

* To add/sub two numbers
— We first compare the two exponents
— Select the higher of the two as the exponent of result

— Select the significand part of lower exponent number and shift it right by
the amount equal to the difference of two exponent

— Remember to keep two shifted out bit and a guard bit

add/sub the signifand as required according to operation and signs of
operands

— Normalize significand of result adjusting exponent

Round the result (add one to the least significant bit to be retained if the
first bit being thrown away is a 1

— Re-normalize the result

Floating Point Multiply

+ To multiply two numbers
— Add the two exponent (remember access 127 notation)
— Produce the result sign as exor of two signs
— Multiple significand portions
— Results will be 1x.xxxxX... 0r 01.XXXX....
— Inthe first case shift result right and adjust exponent
Round off the result

This may require another normalization step

Floating Point Divide

* To divide two numbers

— Subtract divisor’s exponent from the dividend’s exponent
(remember access 127 notation)

— Produce the result sign as exor of two signs

— Divide dividend’s significand by divisor's significand portions
— Results will be 1.xxxxx... or 0.1XXxX....

— Inthe second case shift result left and adjust exponent

— Round off the result

— This may require another normalization step

