
• Single Cycle Problems:
– what if we had a more complicated instruction?
– wasteful of area

• One Solution:
– use a “smaller” cycle time and use different numbers of cycles

for each instruction using a “multicycle” datapath:
• We will be reusing functional units

– Break up the instruction execution in smaller steps

Multicycle Approach

1

Break up the instruction execution in smaller steps
– Each functional unit is used for a specific purpose in one cycle
– Balance the work load
– ALU used to compute address and to increment PC
– Memory used for instruction and data

• At the end of cycle, store results to be used again
– Need additional registers

• Our control signals will not be determined solely by instruction
– e.g., what should the ALU do for a “subtract” instruction?

• We’ll use a finite state machine for control

• Finite state machines:
– a set of states and
– next state function (determined by current state and the input)
– output function (determined by current state and possibly input)

Review: finite state machines

Next state�

Next�
state

2

– We’ll use a Moore machine (output based only on current state)

Next-state�
functionCurrent state

Clock

Output�
function Outputs

Inputs

Instruction Format

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2SW STORE ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2LW LOAD ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

3

31 26 25 21 20 16 15 11 10 6 5 0

JUMP JUMP ADDRESS

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2BEQ/BNE BRANCH ADDRESS OFFSET

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

Operation for Each Instruction

LW:

1. READ INST

2. READ REG 1

READ REG 2

SW:

1. READ INST

2. READ REG 1

READ REG 2

R-Type:

1. READ INST

2. READ REG 1

READ REG 2

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

JMP-Type:

1. READ

INST

2.

4

3. ADD REG 1 +
OFFSET

4. READ MEM

5. WRITE REG2

3. ADD REG 1 +
OFFSET

4. WRITE MEM

5.

3. OPERATE on
REG 1 / REG 2

4.

5. WRITE DST

3. SUB REG 2
from REG 1

4.

5.

3.

4.

5.

Multi-Cycle DataPath Operation

M
U
X

PC

M
U

ALU

4 M
U

M
U
X

A
L
U

25-00

25-21

20-16I
R

M
U
X REG

FILE

RA1

RA2
RD1

RD2WA WD

A
R

B
R

M
U
X

5

X

M
U
X

U
X

CONTROL

ALU
CON

ALUOP

Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

MEM

Add

Data
Out

Data In

WD

D
R

MEM

Add

Data
Out

Data In

BR
COND

BEQ
BNE

JUMP

• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

Five Execution Steps

6

• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

• Use PC to get instruction and put it in the Instruction Register.
• Increment the PC by 4 and put the result back in the PC.
• Can be described succinctly using RTL "Register-Transfer Language"

IR = Memory[PC];
PC = PC + 4;

Step 1: Instruction Fetch

7

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction is a branch
• RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

Step 2: Instruction Decode and Register Fetch

8

• We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

• ALU is performing one of three functions, based on instruction type

• Memory Reference:

ALUOut = A + sign-extend(IR[15-0]);

• R-type:

Step 3 (instruction dependent)

9

ALUOut = A op B;

• Branch:

if (A==B) PC = ALUOut;

• Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;

• R-type instructions finish

Step 4 (R-type or memory-access)

10

Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the cycle on the edge

• Reg[IR[20-16]]= MDR;

What about all the other instructions?

Write-back step

11

Summary:

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)

12

Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

Multi-Cycle DataPath Operation

M
U
X

PC

M
U

ALU

4 M
U

M
U
X

A
L
U

25-00

25-21

20-16I
R

M
U
X REG

FILE

RA1

RA2
RD1

RD2WA WD

A
R

B
R

M
U
X

13

X

M
U
X

U
X

CONTROL

ALU
CON

ALUOP

Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

MEM

Add

Data
Out

Data In

WD

D
R

MEM

Add

Data
Out

Data In

BR
COND

BEQ
BNE

JUMP

LW Operation on Multi-Cycle Data Path: C1

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

14

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

LW Operation on Multi-Cycle Data Path: C2

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

15

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

LW Operation on Multi-Cycle Data Path: C3

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

16

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

LW Operation on Multi-Cycle Data Path: C4

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

17

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

LW Operation on Multi-Cycle Data Path: C5

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

18

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

SW Operation on Multi-Cycle Data Path: C1

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

19

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

SW Operation on Multi-Cycle Data Path: C2

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

20

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

SW Operation on Multi-Cycle Data Path: C3

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

21

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

SW Operation on Multi-Cycle Data Path: C4

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

22

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

R-TYPE Operation on Multi-Cycle Data Path: C1

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

23

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

R-TYPE Operation on Multi-Cycle Data Path: C2

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

24

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

R-TYPE Operation on Multi-Cycle Data Path: C3

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

25

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

R-TYPE Operation on Multi-Cycle Data Path: C4

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

26

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

BR Operation on Multi-Cycle Data Path: C1

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

27

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

BR Operation on Multi-Cycle Data Path: C2

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

28

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

BR Operation on Multi-Cycle Data Path: C3

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

29

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

JUMP Operation on Multi-Cycle Data Path: C1

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

30

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

JUMP Operation on Multi-Cycle Data Path: C2

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

31

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM

Add

Data
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR
COND

BEQ
BNE

JUMP

• How many cycles will it take to execute this code?

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Simple Questions

32

, ()
Label: ...

• What is going on during the 8th cycle of execution?
• In what cycle does the actual addition of $t2 and $t3 takes

place?

• Value of control signals is dependent upon:
– what instruction is being executed
– which step is being performed

• Use the information we’ve accumulated to specify a finite state
machine

Implementing the Control

33

– specify the finite state machine graphically, or
– use micro-programming

• Implementation can be derived from specification

• In each clock cycle, decide all the action that needs to be taken
• The control signal can be 0 and 1 or x (don’t care)
• Make a signal an x if you can to reduce control
• An action that may destroy any useful value be not allowed
• Control Signal required

– ALU: SRC1 (1 bit), SRC2(2 bits),

Deciding the Control

34

ALU: SRC1 (1 bit), SRC2(2 bits),
– operation (Add, Sub, or from FC)
– Memory: address (I or D), read, write, data in IR or MDR
– Register File: address rt/rd, data (MDR/ALUOUT), read, write
– PC: PCwrite, PCwrite-conditional, Data (PC+4, branch, jump)

• Control signal can be implied (register file read are values in A
and B registers (actually A and B need not be registers at all)

• Explicit control vs indirect control (derived based on input like
instruction being executed, or function code field) bits

- How many
state bits
will we
need?

- 4 bits.

Graphical Specification of FSM

PCWrite�
PCSource = 10

ALUSrcA = 1�
ALUSrcB = 00�
ALUOp = 01�
PCWriteCond�

PCSource = 01

ALUSrcA =1�
ALUSrcB = 00�
ALUOp= 10

ALUSrcA = 1�
ALUSrcB = 10�
ALUOp = 00

ALUSrcA = 0�
ALUSrcB = 11�
ALUOp = 00

MemRead�
ALUSrcA = 0�

IorD = 0�
IRWrite�

ALUSrcB = 01�
ALUOp = 00�

PCWrite�
PCSource = 00

Instruction fetch
Instruction decode/�

register fetch

Jump�
completion

Branch�
completionExecution

Memory address�
computation

 (Op = 'LW') or (Op = 'SW') (Op = R-type)

(O
p =

 'B
EQ')

(O
p

=
'J

')

 (O

0
1

9862

Start

35

- Why?

RegDst = 1�
RegWrite�

MemtoReg = 0
MemWrite�
IorD = 1

MemRead�
IorD = 1

RegDst=0�
RegWrite�

MemtoReg=1�
�

Memory�
access

Memory�
access R-type completion

Write-back step

(Op = 'SW
')

(O
p

=
'L

W
')

4

753

Finite State Machine: Control Implementation
PCWrite

PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA

IRWrite

MemRead
MemWrite

Outputs

Control logic

36

ALUSrcA
RegWrite
RegDst

NS3
NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S3 S2 S1 S0

State registerInstruction register�
opcode field

Inputs

PLA Implementation

• If I picked a
horizontal or
vertical line could
you explain it?

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0

37

IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

• ROM = "Read Only Memory"
– values of memory locations are fixed ahead of time

• A ROM can be used to implement a truth table
– if the address is m-bits, we can address 2m entries in the

ROM.
– our outputs are the bits of data that the address points to.

ROM Implementation

38

m is the "height", and n is the "width"

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1

• How many inputs are there?
6 bits for opcode, 4 bits for state = 10-bit
(i.e., 210 = 1024 different addresses)

• How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 bits
ROM i 210 20 20K bit (l i)

ROM Implementation

39

• ROM is 210 x 20 = 20K bits (an unusual size)

• Rather wasteful, since for lots of the entries, the
outputs are the same

— i.e., opcode is often ignored

• Break up the table into two parts
— 4 state bits tell you the 16 outputs, 24 x 16 bits of ROM
— 10 bits tell you the 4 next state bits, 210 x 4 bits of ROM
— Total: 4.3K bits of ROM

• PLA is much smaller
— can share product terms

ROM vs PLA

40

— can share product terms
— only need entries that produce an active output
— can take into account don't cares

• Size is (#inputs × #product-terms) + (#outputs × #product-
terms)

For this example = (10x17)+(20x17) = 460 PLA cells
• PLA cells usually about the size of a ROM cell (slightly bigger)

• Complex
instruction:
the "next
state" is
often current
state + 1

Another Implementation Style

Outputs

PLA or ROM

Control unit PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

IRWrite

MemRead
MemWrite

BWrite

41

AddrCtl

State

Address select logic

O
p[

5–
0]

Adder

Instruction register�
opcode field

1

Input

RegWrite
RegDst

Details-1
Dispatch ROM 1 Dispatch ROM 2

Op Opcode name Value Op Opcode name Value
000000 R-format 0110 100011 lw 0011
000010 jmp 1001 101011 sw 0101
000100 beq 1000
100011 lw 0010
101011 sw 0010

State number Address-control action Value of AddrCtl

42

0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0

Details-2

State

Adder

1

PLA or ROM

Mux
3 2 1 0

AddrCtl

43

O
p

Dispatch ROM 1Dispatch ROM 2

0

Address select logic

Instruction register�
opcode field

Microprogramming: What is a “microinstruction”
PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

R D t

Control unit

Datapath

BWrite

44

AddrCtl
RegDst

Input

Microprogram counter

Address select logic

O
p[

5–
0]

Adder

1

Instruction register�
opcode field

• A specification methodology
– appropriate if hundreds of opcodes, modes, cycles, etc.
– signals specified symbolically using microinstructions

Microprogramming

Label
ALU

control SRC1 SRC2
Register
control Memory

PCWrite
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

M 1 Add A E t d Di t h 2

45

• Will two implementations of the same architecture have the same
microcode?

• What would a micro-assembler do?

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch

Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0

46

control MemtoReg = 0
Write MDR RegWrite, Write a register using the rt field of the IR as the register number and

RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

• No encoding:
– 1 bit for each datapath operation
– faster, requires more memory (logic)
– used for Vax 780 — an astonishing 400K of memory!

• Lots of encoding:
d th i i t ti th h l i t t t l

Maximally vs. Minimally Encoded

47

– send the microinstructions through logic to get control
signals

– uses less memory, slower
• Historical context of CISC:

– Too much logic to put on a single chip with everything else
– Use a ROM (or even RAM) to hold the microcode
– It’s easy to add new instructions

Microcode: Trade-offs

• Distinction between specification and implementation is blurred
• Specification Advantages:

– Easy to design and write
– Design architecture and microcode in parallel

• Implementation (off-chip ROM) Advantages

48

– Easy to change since values are in memory
– Can emulate other architectures
– Can make use of internal registers

• Implementation Disadvantages, SLOWER now that:
– Control is implemented on same chip as processor
– ROM is no longer faster than RAM
– No need to go back and make changes

The Big Picture

Initial�
representation

Finite state�
diagram Microprogram

Sequencing�
control

Explicit next�
state function

Microprogram counter�
+ dispatch ROMS

49

Logic�
representation

Logic�
equations

Truth�
tables

Implementation�
technique

Programmable�
logic array

Read only�
memory

Exceptions

• What should the machine do if there is a problem
• Exceptions are just that

– Changes in the normal execution of a program
• Two types of exceptions

– External Condition: I/O interrupt, power failure, user
termination signal (Ctrl-C)

– Internal Condition: Bad memory read address (not a

50

Internal Condition: Bad memory read address (not a
multiple of 4), illegal instructions, overflow/underflow.

• Interrupts – external
• Exceptions – internal
• Usually we refer to both by the general term “Exception”
• In either case, we need some mechanism by which we can

handle the exception generated.
• Control is transferred to an exception handling mechanism,

stored at a pre-specified location
• Address of instruction is saved in a register called EPC

How Exceptions are Handled

• We need two special registers
– EPC: 32 bit register to hold address of current instruction
– Cause: 32 bit register to hold information about the type of

exception that has occurred.
• Simple Exception Types

– Undefined Instruction
Arithmetic Overflow

51

– Arithmetic Overflow
• Another type is Vectored Interrupts

– Do not need cause register
– Appropriate exception handler jumped to from a vector

table

Two new states for the Multi-cycle CPU

Overflow

11

From State 7

10

From State 1

Undefined
Instruction

52

IntCause=1
CauseWrite
ALUSrcA=0
ALUSrcB=01
ALUOp=01
EPCWrite
PCWrite
PCSource=11

IntCause=0
CauseWrite
ALUSrcA=0
ALUSrcB=01
ALUOp=01
EPCWrite
PCWrite
PCSource=11

Vectored Interrupts/Exceptions

• Address of exception handler depends on the
problem
– Undefined Instruction C0 00 00 00
– Arithmetic OverflowC0 00 00 20

Add d b fi d 32

53

– Addresses are separated by a fixed amount, 32
bytes in MIPS

• PC is transferred to a register called EPC
• If interrupts are not vectored, then we need another

register to store the cause of problem
• In what state what exception can occur?

• Single cycle implementation
– Simpler but slowest
– Require more hardware

• Multi-cycle
– Faster clock

Final Words on Single and Multi-Cycle Systems

54

– Amount of time it takes depends on instruction mix
– Control more complicated

• Exceptions and Other conditions add a lot of complexity
• Other techniques to make it faster

