Multicycle Approach

« Single Cycle Problems:
— what if we had a more complicated instruction?
— wasteful of area
« One Solution:
— use a“smaller” cycle time and use different numbers of cycles
for each instruction using a “multicycle” datapath:
* We will be reusing functional units
— Break up the instruction execution in smaller steps
— Each functional unit is used for a specific purpose in one cycle
— Balance the work load
— ALU used to compute address and to increment PC
— Memory used for instruction and data
« At the end of cycle, store results to be used again
— Need additional registers
« Our control signals will not be determined solely by instruction
— e.g., what should the ALU do for a “subtract” instruction?
« We'll use a finite state machine for control

Review: finite state machines

« Finite state machines:
— aset of states and
— next state function (determined by current state and the input)
— output function (determined by current state and possibly input)

— We’'ll use a Moore machine (output based only on current state)

1
Instruction Format
31 26 25 21 20 1615 1110 6 5 0
w REG 1 ‘ REG 2 LOAD ADDRESS OFFSET
31 26 25 21 20 1615 1110 6 5 0
w REG 1 REG 2 STORE ADDRESS OFFSET
31 26 25 2120 1615 1110 6 5 0
R-TYPE REG 1 ‘ REG 2 DST SHIFT AMOUNT | ADD/AND/OR/SLT
31 26 25 21 20 1615 1110 6 5 0
BEQ/BNE REG 1 ‘ REG 2 BRANCH ADDRESS OFFSET
31 26 25 2120 1615 1110 6 5 0
Jume Jump ADDRESS
3
Multi-Cycle DataPath Operation
M
e 8
X
ALU I
BR
COND
'ALU BNE
CON| BEQ
ALUOP JumpP

2
Operation for Each Instruction
Lw: SW: R-Type: BR-Type: JMP-Type:
1.READ INST |1.READINST |1.READ INST |1.READ INST |1.READ
INST
2.READREG1|2.READREG1|2.READREG1|2. READREG1 |2.
READ REG 2 READREG2| READREG2| READREG2
3.ADD REG 1 +|3. ADD REG 1 +| 3. OPERATE on |3. SUBREG 2 |3.
OFFSET OFFSET REG1/REG2 |fromREG1
4.READ MEM | 4. WRITE MEM | 4. 4. 4
5.WRITE REG2| 5. 5.WRITEDST |5. 5
4
Five Execution Steps
« Instruction Fetch
« Instruction Decode and Register Fetch
« Execution, Memory Address Computation, or Branch Completion
* Memory Access or R-type instruction completion
* Write-back step
INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!
6

Step 1: Instruction Fetch

+ Use PC to get instruction and put it in the Instruction Register.
* Increment the PC by 4 and put the result back in the PC.
+ Can be described succinctly using RTL "Register-Transfer Language”

IR
PC

Memory[PC];
PC + 4;

Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

Step 2: Instruction Decode and Register Fetch

* Read registers rs and rt in case we need them
« Compute the branch address in case the instruction is a branch
« RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]1];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

* We aren't setting any control lines based on the instruction type
(we are busy "decoding” it in our control logic)

Step 3 (instruction dependent)

+ ALU is performing one of three functions, based on instruction type
* Memory Reference:
ALUOuUt = A + sign-extend(IR[15-0]);
* R-type:
ALUOut = A op B;
« Branch:

if (A==B) PC = ALUOuL;

Write-back step

= Reg[IR[20-16]]= MDR;

What about all the other instructions?

11

8
Step 4 (R-type or memory-access)
* Loads and stores access memory
MDR = Memory[ALUOuUt];
or
Memory[ALUOut] = B;
* R-type instructions finish
Reg[IR[15-11]] = ALUOut;
The write actually takes place at the end of the cycle on the edge
10
Summary:
Action for Rtype | Action for memory-reference| Action for | Action for
Step name. instructions instructions branches jumps
Instruction fetch IR=Memony{PC]
PC=PC+4
Instruction A=Reg[IR25-21]]
decodelregister fetch B =Reg [IR20-16]]
ALUOUt = PC + (sign-extend (IR[15-0]) << 2)
Execution, address ALUOUt=A0pB | ALUOUt=A+signextend | if (A=B)then |PC=PC[31-28]1I
computation, branchy (IR[15-0]) PC=ALUOU | (IR25-0]<<2)
jump completion
Memory access or Rtype | Reg [IR[15-11]] = | Load: MDR = MemoryfALUOut]
completion ALUOuUt or
Store: Memory [ALUCUE] =B
Memory read conletion Load: RegfIR[20-16]) = MDR

12

Multi-Cycle DataPath Operation

BR

ALU I
COND

/ALy BNE
CON| BEQ

ALUOP Jump

[baze, CONTROL

13

LW Operation on Multi-Cycle Data Path: C1

MEM| Data
ut

Data I

CONTROL

14

LW Operation on Multi-Cycle Data Path: C2

CONTROL

15

LW Operation on Multi-Cycle Data Path: C3

CONTROL

LW Operation on Multi-Cycle Data Path: C4

MEM| Data
ut

Data In
i
I

CONTROL

17

LW Operation on Multi-Cycle Data Path: C5

MEM| Data
ut

Data I

CONTROL

18

SW Operation on Multi-Cycle Data Path: C1

MEMm| Data
ut

Data I

CONTROL

19

SW Operation on Multi-Cycle Data Path: C2

—+

MEM| Data
ut

EXS)

Data I

CONTROL

20

SW Operation on Multi-Cycle Data Path: C3

CONTROL

21

SW Operation on Multi-Cycle Data Path: C4

R-TYPE Operation on Multi-Cycle Data Path: C1

MEM| Data
ut

Data In
T
[

CONTROL

23

R-TYPE Operation on Multi-Cycle Data Path: C2

MEM| Data
ut
Data I
I

CONTROL

R-TYPE Operation on Multi-Cycle Data Path: C3

Add

mem| Data
ut

Data I

CONTROL

25

R-TYPE Operation on Multi-Cycle Data Path: C4

M
— —{u
25-00 | x
- . —
I M RAL RD1}
Y - — R x
X
[rodd|B
+RD2
=B

CONTROL

1

MEM| Data
ut

=

Data I

26

BR Operation on Multi-Cycle Data Path: C1

CONTROL

27

BR Operation on Multi-Cycle Data Path: C2

|
Ny

CONTROL

28

BR Operation on Multi-Cycle Data Path: C3

MEM| Data
ut
Data I
I

CONTROL

29

JUMP Operation on Multi-Cycle Data Path: C1

MEM| Data
ut
Data It
I

CONTROL

JUMP Operation on Multi-Cycle Data Path: C2

Add

mem| Data
ut

Data I

CONTROL

31

Simple Questions

* How many cycles will it take to execute this code?

Iw $t2, 0($t3)
Iw $t3, 4($t3)
beq $t2, $t3, Labet™ #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)
Label: .

* What is going on during the 8th cycle of execution?
* Inwhat cycle does the actual addition of $t2 and $t3 takes
place?
UoruUuinyroyunug gy
32

Implementing the Control

« Value of control signals is dependent upon:
— what instruction is being executed
— which step is being performed

* Usethe information we've accumulated to specify a finite state
machine
— specify the finite state machine graphically, or
— use micro-programming

+ Implementation can be derived from specification

33

Deciding the Control

« Ineach clock cycle, decide all the action that needs to be taken
+ The control signal can be 0 and 1 or x (don’t care)
+ Make asignal an x if you can to reduce control
* An action that may destroy any useful value be not allowed
« Control Signal required
— ALU: SRC1 (1 bit), SRC2(2 bits),
— operation (Add, Sub, or from FC)
— Memory: address (I or D), read, write, data in IR or MDR
— Register File: address rt/rd, data (MDR/ALUOUT), read, write
— PC: PCwrite, PCwrite-conditional, Data (PC+4, branch, jump)
« Control signal can be implied (register file read are values in A
and B registers (actually A and B need not be registers at all)

« Explicit control vs indirect control (derived based on input like
instruction being executed, or function code field) bits
34

Graphical Specification of FSM i

MemRead 1

lorD =00
IRWie!
ALUSICB = 01,

san
- How many
state bits
will we
need?

PCWitel
PCSource = 10

ALUOP =00

- 4 bits.
- Why?

MemRead!
oD =1

RegDst=001
egWie!

Regwn
Meﬂﬂnﬁwy

35

Finite State Machine: Control Implementation

Control logic

Outputs

Inputs

gl ¢ o o 2 g
2l | 8| & 2| & | «f 4] o
O[OI O[O[O[O[’I ‘I V’I ‘I
Instruction registerd t Sta
opcode field

36

PLA Implementation ..t

0p3 L~

« If I picked a o0z D>
horizontal or op1 D>
vertical line could ODDL{>
you explain it? Sp =
—

—

ROM Implementation

*« ROM ="Read Only Memory"
— values of memory locations are fixed ahead of time
*« A ROM can be used to implement a truth table

— if the address is m-bits, we can address 2™ entries in the
ROM.

— our outputs are the bits of data that the address points to.
000(0011

m n

ﬂ—»#—»

P RROOO

o
1
1
o
o
1
1

rororoOr
EEEEEE
P oOCOR K
~ro00O0O
roroooo

m is the "height", and n is the "width"

137
ROM Implementation
¢ How many inputs are there?
6 bits for opcode, 4 bits for state = 10-bit
(i.e., 210 = 1024 different addresses)
* How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 bits
* ROMis 20 x 20 = 20K bits (an unusual size)
» Rather wasteful, since for lots of the entries, the
outputs are the same
—i.e., opcode is often ignored
39

38
ROM vs PLA
« Break up the table into two parts
— 4 state bits tell you the 16 outputs, 24x 16 bits of ROM
— 10 bits tell you the 4 next state bits, 21°x 4 bits of ROM
— Total: 4.3K bits of ROM
* PLAis much smaller
— can share product terms
—only need entries that produce an active output
— can take into account don't cares
* Sizeis (#inputs x #product-terms) + (#outputs x #product-
terms)
For this example = (10x17)+(20x17) = 460 PLA cells
* PLA cells usually about the size of a ROM cell (slightly bigger)
40

Another Implementation Style

e Complex

instruction: PLA O ROM e

the "next Fewie—T—

state" is Outputs

often current

state + 1

Instruction register 41

Details-1

Dispaich ROM1 Dispaich ROM2
@ Qpcodename: Value (03] Qpcode nae: Vdue |
000000 Riomet 0110 100011 w 0011
000010 Jmp 1001 101011 W 0101
000100 beq 1000
100011 W 0010
101011 El 010

State number Address-control action Value of AddrQil
Use incremented state
Use dispatch ROM 1

Use dispatch ROM2

Use incremented state:
Replace state number by 0
Replace state number by 0
Use incremented state:
Replace state number by 0
Replace state number by 0
Replace state number by 0

©

© [0 N o |0 B [w N =
(=N (=) @ (V) @ (ol (VNN o (V)

42

Details-2

PLA or ROM

‘ Dispatch ROM 2 H Dispatch ROM 1 ‘

Address

Instruction register()
opcode field

Microprogramming: What is a “microinstruction”

Control ur

Datapath

Pl

Instruction register]
opcode field 44

Microinstruction format

Field name alue’ Signals active Comment
o [ALUOD = 00 [Cause the ALU to add.
IALU control Subt ALUOp = 01 [Cause the ALU 1o subiract; this implements the compare for
branches
Func code [ALUGD = 10 Use the insiruction's de (0 determine ALU control
SRC1 pC LUSIA=0 Use the PC as the fist ALU input
A ALUST: [Reqster A i the first ALU input
B |ALUSIcB = 00 Reqister B is the second ALU inpu.
src2 4 LUSIcB =01 Use 4 as the second ALU inpu
Extend ALUSIcB = 10 Use outpu of the siqn extension unit as the second ALU input
Extshit [ALUSIcB =11 Use the output of the shif-by-two unit as the second ALU input.
Read [Read two registers using the s and r fields of the IR as the register
numbers and putting the data into rediste
[Write ALU RegWiite, Wiite a register using the rd field of the IR as the register number and
Register RegDst = 1, ihe contents of the ALUOu as the dat.
control MemtoReq = 0
[Write MDR Regiite, [Wite a register using the field of the IR as the register number and
RegDst =0, ihe contents of the MDR s the data.
MemtoReq = 1
Read PC MemRead, Read memory Using the PC as address; wiite resultinto IR (and
oD =0 ihe VDR).
Memory Read ALU MemRead, Read memory using the ALUOU! as address; write resultinio MDR
orD =1
[Wiite ALU Memwiite, [Wiite memory using the ALUOW! as address, contents of B as the
oD =1 gaia
[ALU PCSource =00 | Wiite the output of the ALU into the PC,
powite
PC write control [ALUOutcond _|PCSource =01, | the Zero output of the ALU is aciive, write the PC with the confents
PCwiiteCond of the register ALUOL
[lump address |PCSource =10, | Wiite the PC it the jump address from the instruction
pewite
Seq [Adorc =11 [Choose the next sequential
Sequencing Eeich AdGICU= 00 Go to the frst 1o begin a new s
Dispatch 1 |nddrcii = 01 Dispatch using the ROM 1. 40
Dispaich [Agdrcu=10 Dispaich using (he ROW

43
Microprogramming
* A specification methodology
— appropriate if hundreds of opcodes, modes, cycles, etc.
— signals specified symbolically using microinstructions
ALU Register PCWrite
Label control |SRC1| SRC2 | control Memor: control
Fetch |Add PC__|a |Read PC_|ALU Seq
Add PC Extshft |Read Dispatch 1
Mem1 Add A Exlend Dispatch 2
LW2 Read ALU Seq
Write MDR Fetch
SW2 Write ALU Fetch
Rformatl |[Func code |A B Seq
\Write ALU Fetch
BEQ1 Subt A B |ALUOut-cond |Fetch
JUMPL Jump address |Fetch
« Will two implementations of the same architecture have the same
microcode?
+ What would a micro-assembler do?
45
Maximally vs. Minimally Encoded
* No encoding:
— 1bit for each datapath operation
— faster, requires more memory (logic)
— used for Vax 780 — an astonishing 400K of memory!
* Lots of encoding:
— send the microinstructions through logic to get control
signals
— uses less memory, slower
« Historical context of CISC:
— Too much logic to put on a single chip with everything else
— Use a ROM (or even RAM) to hold the microcode
— It's easy to add new instructions
47

Microcode: Trade-offs

« Distinction between specification and implementation is blurred
« Specification Advantages:

— Easy to design and write

— Design architecture and microcode in parallel
« Implementation (off-chip ROM) Advantages

— Easy to change since values are in memory

— Can emulate other architectures

— Can make use of internal registers
* Implementation Disadvantages, SLOWER now that:

— Control is implemented on same chip as processor

— ROMis no longer faster than RAM

— No need to go back and make changes

48

The Big Picture

Initial 0] Finite state(])
. . Microprogram
representation diagram
Ve
Sequencingd Explicit nextt] Microprogram counter(]
control state function + dispatch ROMS
Yo 7
LogicO LogicO TruthO
representation equations tables
Yo |
Implementationd]| Programmable) Read onlyO)
technique logic array memory

49

Exceptions

« What should the machine do if there is a problem
« Exceptions are just that
— Changes in the normal execution of a program
« Two types of exceptions
— External Condition: I/O interrupt, power failure, user
termination signal (Ctrl-C)
— Internal Condition: Bad memory read address (not a
multiple of 4), illegal instructions, overflow/underflow.
< Interrupts — external
« Exceptions —internal
« Usually we refer to both by the general term “Exception”
« In either case, we need some mechanism by which we can
handle the exception generated.
« Control is transferred to an exception handling mechanism,
stored at a pre-specified location

« Address of instruction is saved in a register called EPC

How Exceptions are Handled

* We need two special registers
— EPC: 32 bit register to hold address of current instruction
— Cause: 32 bit register to hold information about the type of
exception that has occurred.
« Simple Exception Types
— Undefined Instruction
— Arithmetic Overflow
« Another type is Vectored Interrupts
— Do not need cause register
— Appropriate exception handler jumped to from a vector
table

51

Vectored Interrupts/Exceptions

» Address of exception handler depends on the
problem
— Undefined Instruction CO0 00 00 00
— Arithmetic Overflow C0O 00 00 20
— Addresses are separated by a fixed amount, 32

bytes in MIPS

* PCis transferred to aregister called EPC

e If interrupts are not vectored, then we need another
register to store the cause of problem

* In what state what exception can occur?

53

50
Two new states for the Multi-cycle CPU
From State 7 From State 1
Undefined
Instruction
10
IntCause=1
CauseWrite IntCausefO
ALUSICA=0 CauseWrite
ALUSIcB=01 ALUSICA=0
ALUOp=01 ALUSrcB=01
EPCWrite ALUOp=01
PCWrite Ega,"\.’{“e
— rite
PCSource=11 PCSource=11
52
Final Words on Single and Multi-Cycle Systems
» Single cycle implementation
— Simpler but slowest
— Require more hardware
« Multi-cycle
— Faster clock
— Amount of time it takes depends on instruction mix
— Control more complicated
« Exceptions and Other conditions add a lot of complexity
« Other technigues to make it faster
54

