
• Single Cycle Problems:
– what if we had a more complicated instruction?
– wasteful of area

• One Solution:
– use a “smaller” cycle time and use different numbers of cycles 

for each instruction using a “multicycle” datapath:
• We will be reusing functional units

– Break up the instruction execution in smaller steps

Multicycle Approach
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Break up the instruction execution in smaller steps
– Each functional unit is used for a specific purpose in one cycle
– Balance the work load
– ALU used to compute address and to increment PC
– Memory used for instruction and data

• At the end of cycle, store results to be used again
– Need additional registers

• Our control signals will not be determined solely by instruction
– e.g., what should the ALU do for a “subtract” instruction?

• We’ll use a finite state machine for control

• Finite state machines:
– a set of states and 
– next state function (determined by current state and the input)
– output function (determined by current state and possibly input)

Review:  finite state machines

Next state�

Next�
state

2

– We’ll use a Moore machine (output based only on current state)

Next-state�
functionCurrent state

Clock

Output�
function Outputs

Inputs

Instruction Format

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

REG 1 REG 2SW STORE ADDRESS                                   OFFSET

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

REG 1 REG 2LW LOAD ADDRESS                                     OFFSET

31                            26  25                      21  20                          16 15                       11 10  6     5                            0
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31                            26  25                      21  20                          16 15                       11 10  6     5                            0

JUMP JUMP                                                                          ADDRESS

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

REG 1 REG 2BEQ/BNE BRANCH ADDRESS                               OFFSET

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

Operation for Each Instruction 

LW:

1. READ INST

2. READ REG 1

READ REG 2

SW:

1. READ INST

2. READ REG 1

READ REG 2

R-Type:

1. READ INST

2. READ REG 1

READ REG 2

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

JMP-Type:

1. READ 

INST

2. 

4

3. ADD REG 1 + 
OFFSET 

4. READ MEM

5. WRITE REG2

3. ADD REG 1 + 
OFFSET 

4. WRITE MEM

5. 

3. OPERATE on 
REG 1 / REG 2 

4. 

5. WRITE DST

3. SUB REG 2 
from REG 1

4. 

5. 

3.  

4. 

5. 

Multi-Cycle DataPath Operation
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• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

Five Execution Steps
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• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!



• Use PC to get instruction and put it in the Instruction Register.
• Increment the PC by 4 and put the result back in the PC.
• Can be described succinctly using RTL "Register-Transfer Language"

IR = Memory[PC];
PC = PC + 4;

Step 1:  Instruction Fetch
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Can we figure out the values of the control signals?

What is the advantage of updating the PC now?

• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction is a branch
• RTL:

A = Reg[IR[25-21]];
B = Reg[IR[20-16]];
ALUOut = PC + (sign-extend(IR[15-0]) << 2);

Step 2:  Instruction Decode and Register Fetch
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• We aren't setting any control lines based on the instruction type 
(we are busy "decoding" it in our control logic)

• ALU is performing one of three functions, based on instruction type

• Memory Reference:

ALUOut = A + sign-extend(IR[15-0]);

• R-type:

Step 3 (instruction dependent)

9

ALUOut = A op B;

• Branch:

if (A==B) PC = ALUOut;

• Loads and stores access memory

MDR = Memory[ALUOut];
or

Memory[ALUOut] = B;

• R-type instructions finish

Step 4 (R-type or memory-access)
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Reg[IR[15-11]] = ALUOut;

The write actually takes place at the end of the cycle on the edge

• Reg[IR[20-16]]= MDR;

What about all the other instructions?

Write-back step

11

Summary:

Step name
Action for R-type 

instructions
Action for memory-reference 

instructions
Action for 
branches

Action for       
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)
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Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion
Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR



Multi-Cycle DataPath Operation
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LW Operation on Multi-Cycle Data Path: C1
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LW Operation on Multi-Cycle Data Path: C2
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LW Operation on Multi-Cycle Data Path: C3
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LW Operation on Multi-Cycle Data Path: C4
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LW Operation on Multi-Cycle Data Path: C5
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SW Operation on Multi-Cycle Data Path: C1
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SW Operation on Multi-Cycle Data Path: C2
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SW Operation on Multi-Cycle Data Path: C3
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SW Operation on Multi-Cycle Data Path: C4
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R-TYPE Operation on Multi-Cycle Data Path: C1

M
U
X

AALU

M
U
X

REG
FILE

RA1

RA2
RD1 A

R
PC

M
U
X

25-00

25-21

20-16I
R

23

D
R

M
U
X

M
U
X

4

L
U

ALU

M
U
X

CONTROL

ALU
CON

ALUOP

FILE

RD2WA WD
B
R

MEM           

Add

Data 
Out

Data In
Shift
Left 2

15-11

15-00

05-00

31-26

Sign
Ext

BR 
COND

BEQ
BNE

JUMP

R-TYPE Operation on Multi-Cycle Data Path: C2
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R-TYPE Operation on Multi-Cycle Data Path: C3
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R-TYPE Operation on Multi-Cycle Data Path: C4
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BR Operation on Multi-Cycle Data Path: C1
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BR Operation on Multi-Cycle Data Path: C2
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BR Operation on Multi-Cycle Data Path: C3
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JUMP Operation on Multi-Cycle Data Path: C1
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JUMP Operation on Multi-Cycle Data Path: C2
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• How many cycles will it take to execute this code? 

lw $t2, 0($t3)
lw $t3, 4($t3)
beq $t2, $t3, Label #assume not
add $t5, $t2, $t3
sw $t5, 8($t3)

Simple Questions

32

, ( )
Label: ...

• What is going on during the 8th cycle of execution?
• In what cycle does the actual addition of $t2 and $t3 takes 

place?

• Value of control signals is dependent upon:
– what instruction is being executed
– which step is being performed

• Use the information we’ve accumulated to specify a finite state 
machine

Implementing the Control

33

– specify the finite state machine graphically, or
– use micro-programming

• Implementation can be derived from specification

• In each clock cycle, decide all the action that needs to be taken
• The control signal can be 0 and 1 or x (don’t care)
• Make a signal an x if you can to reduce control
• An action that may destroy any useful value be not allowed
• Control Signal required

– ALU: SRC1 (1 bit), SRC2(2 bits),

Deciding the Control

34

ALU: SRC1 (1 bit), SRC2(2 bits), 
– operation (Add, Sub, or from FC)
– Memory: address (I or D), read, write, data in IR or MDR
– Register File: address rt/rd, data (MDR/ALUOUT), read, write
– PC: PCwrite, PCwrite-conditional, Data (PC+4, branch, jump)

• Control signal can be implied (register file read are values in A 
and B registers (actually A and B need not be registers at all)

• Explicit control vs indirect control (derived based on input like 
instruction being executed, or function code field) bits 

- How many 
state bits 
will we 
need?

- 4 bits.

Graphical Specification of FSM

PCWrite�
PCSource = 10

ALUSrcA = 1�
ALUSrcB = 00�
ALUOp = 01�
PCWriteCond�
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ALUOp = 00
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ALUSrcB = 11�
ALUOp = 00

MemRead�
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IRWrite�
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ALUOp = 00�

PCWrite�
PCSource = 00

Instruction fetch
Instruction decode/�
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Jump�
completion
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9862

Start
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- Why?

RegDst = 1�
RegWrite�

MemtoReg = 0
MemWrite�
IorD = 1

MemRead�
IorD = 1

RegDst=0�
RegWrite�

MemtoReg=1�
�

Memory�
access

Memory�
access R-type completion

Write-back step

(Op = 'SW
')

(O
p 

= 
'L

W
')

4

753

Finite State Machine: Control Implementation
PCWrite

PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA

IRWrite

MemRead
MemWrite

Outputs

Control logic

36

ALUSrcA
RegWrite
RegDst

NS3
NS2
NS1
NS0

O
p5

O
p4

O
p3

O
p2

O
p1

O
p0

S3 S2 S1 S0

State registerInstruction register�
opcode field

Inputs



PLA Implementation

• If I picked a 
horizontal or 
vertical line could 
you explain it?

Op5

Op4

Op3

Op2

Op1

Op0

S3

S2

S1

S0
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IorD

IRWrite

MemRead
MemWrite

PCWrite
PCWriteCond

MemtoReg
PCSource1

ALUOp1

ALUSrcB0
ALUSrcA
RegWrite
RegDst
NS3
NS2
NS1
NS0

ALUSrcB1
ALUOp0

PCSource0

• ROM = "Read Only Memory"
– values of memory locations are fixed ahead of time

• A ROM can be used to implement a truth table
– if the address is m-bits, we can address 2m entries in the 

ROM.
– our outputs are the bits of data that the address points to.

ROM Implementation

38

m is the "height", and n is the "width"

m n

0 0 0 0 0 1 1
0 0 1 1 1 0 0
0 1 0 1 1 0 0
0 1 1 1 0 0 0 
1 0 0 0 0 0 0 
1 0 1 0 0 0 1
1 1 0 0 1 1 0
1 1 1 0 1 1 1

• How many inputs are there?
6 bits for opcode, 4 bits for state = 10-bit
(i.e., 210 = 1024 different addresses)

• How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 bits
ROM i 210 20 20K bit ( l i )

ROM Implementation

39

• ROM is 210 x 20 = 20K bits    (an unusual size)

• Rather wasteful, since for lots of the entries, the 
outputs are the same

— i.e., opcode is often ignored

• Break up the table into two parts
— 4 state bits tell you the 16 outputs,  24 x 16 bits of ROM
— 10 bits tell you the 4 next state bits,  210 x 4 bits of ROM
— Total:  4.3K bits of ROM

• PLA is much smaller
— can share product terms

ROM vs PLA

40

— can share product terms
— only need entries that produce an active output
— can take into account don't cares

• Size is (#inputs × #product-terms) + (#outputs × #product-
terms)

For this example  =  (10x17)+(20x17) = 460 PLA cells
• PLA cells usually about the size of a ROM cell (slightly bigger)

• Complex 
instruction:  
the "next 
state" is 
often current 
state + 1

Another Implementation Style

Outputs

PLA or ROM

Control unit PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

IRWrite

MemRead
MemWrite

BWrite
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AddrCtl

State

Address select logic

O
p[

5–
0]

Adder

Instruction register�
opcode field

1

Input

RegWrite
RegDst

Details-1
Dispatch ROM 1 Dispatch ROM 2

Op Opcode name Value Op Opcode name Value
000000 R-format 0110 100011 lw 0011
000010 jmp 1001 101011 sw 0101
000100 beq 1000
100011 lw 0010
101011 sw 0010

State number Address-control action Value of AddrCtl

42

0 Use incremented state 3
1 Use dispatch ROM 1 1
2 Use dispatch ROM 2 2
3 Use incremented state 3
4 Replace state number by 0 0
5 Replace state number by 0 0
6 Use incremented state 3
7 Replace state number by 0 0
8 Replace state number by 0 0
9 Replace state number by 0 0



Details-2

State

Adder

1

PLA or ROM

Mux
3 2 1 0

AddrCtl

43

O
p

Dispatch ROM 1Dispatch ROM 2

0

Address select logic

Instruction register�
opcode field

Microprogramming: What is a “microinstruction”
PCWrite
PCWriteCond
IorD

MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

Outputs

Microcode memory

IRWrite

MemRead
MemWrite

R D t

Control unit

Datapath

BWrite
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AddrCtl
RegDst

Input

Microprogram counter

Address select logic

O
p[

5–
0]

Adder

1

Instruction register�
opcode field

• A specification methodology
– appropriate if hundreds of opcodes, modes, cycles, etc.
– signals specified symbolically using microinstructions

Microprogramming

Label
ALU 

control SRC1 SRC2
Register 
control Memory

PCWrite 
control Sequencing

Fetch Add PC 4 Read PC ALU Seq
Add PC Extshft Read Dispatch 1

M 1 Add A E t d Di t h 2
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• Will two implementations of the same architecture have the same 
microcode?

• What would a micro-assembler do?

Mem1 Add A Extend Dispatch 2
LW2 Read ALU Seq

Write MDR Fetch
SW2 Write ALU Fetch
Rformat1 Func code A B Seq

Write ALU Fetch
BEQ1 Subt A B ALUOut-cond Fetch
JUMP1 Jump address Fetch

Microinstruction format
Field name Value Signals active Comment

Add ALUOp = 00 Cause the ALU to add.
ALU control Subt ALUOp = 01 Cause the ALU to subtract; this implements the compare for

branches.
Func code ALUOp = 10 Use the instruction's function code to determine ALU control.

SRC1 PC ALUSrcA = 0 Use the PC as the first ALU input.
A ALUSrcA = 1 Register A is the first ALU input.
B ALUSrcB = 00 Register B is the second ALU input.

SRC2 4 ALUSrcB = 01 Use 4 as the second ALU input.
Extend ALUSrcB = 10 Use output of the sign extension unit as the second ALU input.
Extshft ALUSrcB = 11 Use the output of the shift-by-two unit as the second ALU input.
Read Read two registers using the rs and rt fields of the IR as the register

numbers and putting the data into registers A and B.
Write ALU RegWrite, Write a register using the rd field of the IR as the register number and

Register RegDst = 1, the contents of the ALUOut as the data.
control MemtoReg = 0
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control MemtoReg = 0
Write MDR RegWrite, Write a register using the rt field of the IR as the register number and

RegDst = 0, the contents of the MDR as the data.
MemtoReg = 1

Read PC MemRead, Read memory using the PC as address; write result into IR (and 
lorD = 0 the MDR).

Memory Read ALU MemRead, Read memory using the ALUOut as address; write result into MDR.
lorD = 1

Write ALU MemWrite, Write memory using the ALUOut as address, contents of B as the
lorD = 1 data.

ALU PCSource = 00 Write the output of the ALU into the PC.
PCWrite

PC write control ALUOut-cond PCSource = 01, If the Zero output of the ALU is active, write the PC with the contents
PCWriteCond of the register ALUOut.

jump address PCSource = 10, Write the PC with the jump address from the instruction.
PCWrite

Seq AddrCtl = 11 Choose the next microinstruction sequentially.
Sequencing Fetch AddrCtl = 00 Go to the first microinstruction to begin a new instruction.

Dispatch 1 AddrCtl = 01 Dispatch using the ROM 1.
Dispatch 2 AddrCtl = 10 Dispatch using the ROM 2.

• No encoding:
– 1 bit for each datapath operation
– faster, requires more memory (logic)
– used for Vax 780 — an astonishing 400K of memory!

• Lots of encoding:
d th i i t ti th h l i t t t l

Maximally vs. Minimally Encoded
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– send the microinstructions through logic to get control 
signals

– uses less memory, slower
• Historical context of CISC:

– Too much logic to put on a single chip with everything else
– Use a ROM (or even RAM) to hold the microcode
– It’s easy to add new instructions

Microcode:  Trade-offs

• Distinction between specification and implementation is blurred
• Specification Advantages:

– Easy to design and write
– Design architecture and microcode in parallel

• Implementation (off-chip ROM) Advantages
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– Easy to change since values are in memory
– Can emulate other architectures
– Can make use of internal registers

• Implementation Disadvantages,  SLOWER now  that:
– Control is implemented on same chip as processor
– ROM is no longer faster than RAM
– No need to go back and make changes



The Big Picture

Initial�
representation

Finite state�
diagram Microprogram

Sequencing�
control

Explicit next�
state function

Microprogram counter�
+ dispatch ROMS
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Logic�
representation

Logic�
equations

Truth�
tables

Implementation�
technique

Programmable�
logic array

Read only�
memory

Exceptions

• What should the machine do if there is a problem
• Exceptions are just that 

– Changes in the normal execution of a program
• Two types of exceptions

– External Condition: I/O interrupt, power failure, user 
termination signal (Ctrl-C)

– Internal Condition: Bad memory read address (not a
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Internal Condition: Bad memory read address (not a 
multiple of 4), illegal instructions, overflow/underflow.

• Interrupts – external
• Exceptions – internal
• Usually we refer to both by the general term “Exception”
• In either case, we need some mechanism by which we can 

handle the exception generated.
• Control is transferred to an exception handling mechanism, 

stored at a pre-specified location
• Address of instruction is saved in a register called EPC

How Exceptions are Handled

• We need two special registers
– EPC: 32 bit register to hold address of current instruction
– Cause: 32 bit register to hold information about the type of 

exception that has occurred.
• Simple Exception Types

– Undefined Instruction
Arithmetic Overflow
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– Arithmetic Overflow
• Another type is Vectored Interrupts

– Do not need cause register
– Appropriate exception handler jumped to from a vector 

table

Two new states for the Multi-cycle CPU

Overflow

11

From State 7

10

From State 1

Undefined
Instruction
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IntCause=1
CauseWrite
ALUSrcA=0
ALUSrcB=01
ALUOp=01
EPCWrite
PCWrite
PCSource=11

IntCause=0
CauseWrite
ALUSrcA=0
ALUSrcB=01
ALUOp=01
EPCWrite
PCWrite
PCSource=11

Vectored Interrupts/Exceptions

• Address of exception handler depends on the 
problem
– Undefined Instruction C0 00 00 00
– Arithmetic OverflowC0 00 00 20

Add d b fi d 32
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– Addresses are separated by a fixed amount, 32 
bytes in MIPS

• PC is transferred to a register called EPC 
• If interrupts are not vectored, then we need another 

register to store the cause of problem
• In what state what exception can occur?

• Single cycle implementation
– Simpler but slowest
– Require more hardware

• Multi-cycle
– Faster clock

Final Words on Single and Multi-Cycle Systems
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– Amount of time it takes depends on instruction mix
– Control more complicated

• Exceptions and Other conditions add a lot of complexity
• Other techniques to make it faster


