
Pipelining

• Reconsider the data path we just did
• Each instruction takes from 3 to 5 clock cycles
• However, there are parts of hardware that are idle many time
• We can reorganize the operation
• Make each hardware block independent

– 1. Instruction Fetch Unit
2 R i t R d U it

1

– 2. Register Read Unit
– 3. ALU Unit
– 4. Data Memory Read/Write Unit
– 5. Register Write Unit

• Units in 3 and 5 cannot be independent, but operations can be
• Let each unit just do its required job for each instruction
• If for some instruction, a unit need not do anything, it can simply

perform a noop

Gain of Pipelining

• Improve performance by increasing instruction throughput
• Ideal speedup is number of stages in the pipeline
• Do we achieve this? No, why not?

Ins truction�
fe tch R eg A LU D ata �

ac cess R eg

Tim e

lw $ 1, 10 0 ($0)

2 4 6 8 1 0 1 2 14 16 1 8
P rog ram �
e xecution �
o rd er�
(in in struc tio ns)

2

8 n s
Ins truction�

fe tch R eg A LU D ata�
access R eg

8 n s
Ins tru ction�

fe tch

 8 ns

lw $ 2, 20 0 ($0)

lw $ 3, 30 0 ($0)

2 4 6 8 1 0 1 2 14

...

Ins truc tion �
fetch R eg ALU D a ta�

access R eg

T im e

lw $1 , 1 00 ($ 0)

lw $2 , 2 00 ($ 0)

lw $3 , 3 00 ($ 0)

2 ns Ins truc tion �
fetch R eg ALU D a ta�

access R eg

2 ns
Ins truc tion �

fetch R eg ALU D a ta�
acces s R eg

2 ns 2 ns 2 n s 2 ns 2 n s

�

P rog ram �
e xecutio n�
o rd er�
(in instructio n s)

Pipelining

• What makes it easy
– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard?
structural hazards: suppose we had only one memory

3

– structural hazards: suppose we had only one memory
– control hazards: need to worry about branch instructions
– data hazards: an instruction depends on a previous instruction

• We’ll study these issues using a simple pipeline
• Other complication:

– exception handling
– trying to improve performance with out-of-order execution, etc.

Basic Idea

4 Add Add�
res ult

M �
u�
x

0

1

Add

IF : Instruc tion fetch ID : Ins truction decode /�
reg is ter file read

E X: Execute /�
add ress calcu la tion

M EM : M em ory access W B: W rite back

4

• What do we need to add to actually split the datapath into stages?

In struction�
memory

Add ress

32

0

Shift�
left 2

Ins truction

PC

0Wri te�
data

M�
u�
x

1
R eg iste rs

Read�
data 1

Read�
data 2

R ead�
regis ter 1

R ead�
regis ter 2

16
Sign�

extend

W rite�
regis ter

W rite�
data

R ead�
da taAddress

Da ta�
memory

1

A LU �
result

M �
u�
x

A LU
Zero

Pipelined Data Path

Instruction�

Address

4 Add Add�
result

Shift�
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M�
u�
x

0

1

Add

PC

Registers

Read�
data 1

R d

Read�
register 1

Read�
register 2

ALUALU
Zero

ID /EX

5

Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?

memory

32

0

0Write�
data

M�
u�
x

1
Registers Read�

data 2

16
Sign�

extend

Write�
register

Write�
data

Read�
data

1

ALU�
result

M�
u�
x

ALU

D ata�
memory

Address

Corrected Data Path

4 Add Add�
result

Shift�
left 2

IF/ID EX/MEM MEM/WB

M�
u�
x

0

1

Add

ID/EX

6

Instruction�
memory

Address

32

0

In
st

ru
ct

io
n

PC

0

Address

Write�
data

M�
u�
x

1
Registers

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

16
Sign�

extend

Write�
register

Write�
data

Read�
data

Data�
memory

1

ALU�
result

M�
u�
x

ALU
Zero

Execution Time

• Time of n instructions depends on
– Number of instructions n
– # of stages k
– # of control hazard and penalty of each step
– # of data hazards and penalty for each

1

7

• Time = n + k - 1 + load hazard penalty + branch penalty
• Load hazard penalty is 1 or 0 cycle

– depending on data use with forwarding
• branch penalty is 3, 2, 1, or zero cycles depending on scheme

Design and Performance Issues With Pipelining

• Pipelined processors are not EASY to design
• Technology affect implementation
• Instruction set design affect the performance, i.e., beq, bne
• More stages do not lead to higher performance

8

Pipeline Operation

• In pipeline one operation begins in every cycle
• Also, one operation completes in each cycle
• Each instruction takes 5 clock cycles (k cycles in general)
• When a stage is not used, no control needs to be applied
• In one clock cycle, several instructions are active
• Different stages are executing different instructions
• How to generate control signals for them is an issue

9

How to generate control signals for them is an issue

Graphically Representing Pipelines

IM R eg D M R eg

IM R eg D M R eg

C C 1 C C 2 C C 3 C C 4 C C 5 C C 6

T im e (in c lo ck cycles)

lw $1 0 , 20($ 1)

P rog ram �
execution�
o rder�
(in instruc tions)

sub $11 , $2, $3

A LU

A LU

10

• Can help with answering questions like:
– how many cycles does it take to execute this code?
– what is the ALU doing during cycle 4?
– use this representation to help understand datapaths

Instruction Format

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2SW STORE ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2LW LOAD ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

11

31 26 25 21 20 16 15 11 10 6 5 0

JUMP JUMP ADDRESS

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2BEQ/BNE BRANCH ADDRESS OFFSET

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

Operation for Each Instruction

LW:

1. READ INST

2. READ REG 1

READ REG 2

SW:

1. READ INST

2. READ REG 1

READ REG 2

R-Type:

1. READ INST

2. READ REG 1

READ REG 2

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

JMP-Type:

1. READ

INST

2.

12

3. ADD REG 1 +
OFFSET

4. READ MEM

5. WRITE REG2

3. ADD REG 1 +
OFFSET

4. WRITE MEM

5.

3. OPERATE on
REG 1 / REG 2

4.

5. WRITE DST

3. SUB REG 2
from REG 1

4.

5.

3.

4.

5.

Pipeline Data Path Operation

4 A
D
D

M
U
X M

U
X

M
U
X

Control

31-26

Sign
Ext

Shift
Left

2

M20-16

A
D
D

15-00

13

P
C

D

INST
MEMORY

IA

INST
31-00

20-00

REG FILE

25-21 RA1

20-16 RA2

RD1

RD2
WA WD

M
U
X

M
U
X

M
U
X

M
U
X

15-11

A
L
U

M
U
X

M
E
M

WD

ADDR

Fetch Unit

4 A
D
D

M
U
X M

U
X

M
U
X

NPC

Jump Address
Jump Register Address

Branch Address

14

P
C

D

INST
MEMORY

IA

INST
31-00

INST

Register Fetch Unit

Control

31-26
NPC

15

20-00

REG FILE

25-21 RA1

20-16 RA2

RD1

RD2
WA WD

INST

ALU Operation and Branch Logic

Sign
Ext

Shift
Left

2

M20-16

A
D
D

15-00

INST 20 00

Branch address

16

M
U
X

M
U
X

M
U
X

M
U
X

15-11

A
L
U

RD1

RD2

INST 20-00
Reg Write Address
Write Data

ALU OUTPUT

Memory and Write back Stage

17

M
U
X

M
E
M

WD

ADDR

WRITE DATA

ADDR

Data Read

Data ALU

Pipeline Data Path Operation

4 A
D
D

M
U
X M

U
X

M
U
X

Control

31-26

Sign
Ext

Shift
Left

2

M20-16

A
D
D

15-00

18

P
C

D

INST
MEMORY

IA

INST
31-00

20-00

REG FILE

25-21 RA1

20-16 RA2

RD1

RD2
WA WD

M
U
X

M
U
X

M
U
X

M
U
X

15-11

A
L
U

M
U
X

M
E
M

WD

ADDR

• Problem with starting next instruction before first is finished
– dependencies that “go backward in time” are data hazards

Dependencies

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

Program�
execution�
order�

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20
Value of �
register $2:

19

IM Reg

IM Reg

sub $2, $1, $3

order�
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

DM Reg

Reg

Reg

Reg

DM

• Consider the following program

add $t0, $t1, $t2
add $t1, $t0, $t3
and $t2, $t4, $t0
or $t3, $t1, $t0
slt $t4 $t2 $t3

A program with data dependencies

20

slt $t4, $t2, $t3

• Problem with starting next instruction before first is finished
– dependencies that “go backward in time” are data hazards

Data Path Operation

C1 C2 C3 C4 C5 C6 C7 C8 C9

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

add $t0, $t1, $t2

add $t1, $t0, $t3

21

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

and $t2, $t4, $t0

or $t3, $t1, $t0

slt $t4, $t2, $t3

• Have compiler guarantee no hazards
• Where do we insert the “no-ops” ?

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Solution: Software No-ops/Hardware Bubbles

22

Problem: this really slows us down!
– Also, the program will always be slow even if a techniques like

forwarding is employed afterwards in newer version

• Hardware can detect dependencies and insert no-ops in hardware
– Hardware detection and no-op insertion is called stalling
– This is a bubble in pipeline and waste one cycle at all stages
– Need two or three bubbles between write and read of a register

Hazard Detection Unit

• Stall by letting an instruction that won’t write anything go forward

Control

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Hazard�
detection�

unit

0

M�
u�
x

IF/ID

ID/EX.MemRead

IF
/ID

W
rit

e

te

23

PC Instruction�
memory

Registers

M�
u�
x

M�
u�
x

M�
u�
x

ALU Data�
memory

M�
u�
x

Forwarding�
unit

In
st

ru
ct

io
n

P
C

W
rit

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt
IF/ID.RegisterRt
IF/ID.RegisterRs

Rt
Rs

Rd

Rt EX/MEM.RegisterRd

MEM/WB.RegisterRd

Stalling

• Hardware detection and no-op insertion is called stalling
• We stall the pipeline by keeping an instruction in the same stage

lw $2, 20($1)

Program�
execution�
order�
(in instructions)

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6
Time (in clock cycles)

CC 7 CC 8 CC 9 CC 10

DM Reg

24

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Reg

Reg

IM DM

IM Reg DM RegIM

IM DM Reg

IM DM Reg

RegReg

Reg

bubble

Stalled Operation (no write before read)

C1 C2 C3 C4 C5 C6 C7 C8 C9

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

add $t0, $t1, $t2

add $t1, $t0, $t3

25

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

add $t1, $t0, $t3

add $t1, $t0, $t3

add $t1, $t0, $t3

Stalled Operation (write before read)

C1 C2 C3 C4 C5 C6 C7 C8 C9

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

add $t0, $t1, $t2

add $t1, $t0, $t3

26

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

A
L
U

M
U
X

INST
FETCH

REG
FILE

M
U
X

DATA
MEMORY

add $t1, $t0, $t3

add $t1, $t0, $t3

and $t2, $t4, $t0

• EX hazard
– If ((EX/MEM.RegWrite) and (EX/MEM.RegisterRd != 0) and

(EX/MEM.REgisterRd = ID/EX.RegisterRs)) ForwardA = 10
– If ((EX/MEM.RegWrite) and (EX/MEM.RegisterRd != 0) and

(EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

• MEM hazard
– If ((MEM/WB.RegWrite) and (MEM/WB.REgisterRd != 0) and

(MEM/WB.REgisterRd = ID/EX.RegisterRs)) ForwardA = 01

Detecting Hazards for Forwarding

27

(g g))
– If ((MEM/WB.RegWrite) and (MEM/WB.REgisterRd != 0) and

(MEM/WB.REgisterRd = ID/EX.RegisterRt)) ForwardB = 10

• In case of lw followed by a sw instruction, forwarding will not
work. This is because data in MEM stage are still being read
– Plan on adding forwarding in MEM stage of put a stall/bubble

• In case of lw followed by an instruction that uses the value
– One has to add an stall

• Use temporary results, don’t wait for them to be written
– register file forwarding to handle read/write to same register
– ALU forwarding
– May also need forwarding to memory (think!!)

Forwarding

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20Value of register $2 :
X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

28what if this $2 was $13?

IM Reg

IM Reg

sub $2, $1, $3

Program�
execution order�
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

DM Reg

Reg

Reg

Reg

DM

Forwarding

Registers

Control

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

M�
u�
x

IF/ID

st
ru

ct
io

n

29

PC Instruction�
memory

Registers

M�
u�
x

M�
u�
x

ALU Data�
memory

Forwarding�
unit

In
s

M�
u�
x

Rd
EX/MEM.RegisterRd

MEM/WB.RegisterRd

Rt

Rt

Rs

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

• Load word can still cause a hazard:
– an instruction tries to read a register following a load instruction

that writes to the same register.

Can't always forward

IM Reg

C C 1 C C 2 C C 3 CC 4 C C 5 C C 6

T im e (in c lock cyc les)

lw $2, 20 ($1)

Program �
execu tion�
order�
(in ins tructions)

CC 7 C C 8 C C 9

DM R eg

30• Thus, we need a hazard detection unit to “stall” the load instruction

Reg

R eg

IMand $4 , $2, $5

IM Reg D M Reg

IM DM R eg

IM D M R eg

or $8 , $2, $6

add $9 , $4, $2

slt $1, $6 , $7

R eg

R eg

DM

• When we decide to branch, other instructions are in the pipeline!

Branch Hazards

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program�
execution�
order�
(in instructions)

IM Reg

IM DM

DM Reg

Reg Reg44 and $12, $2, $5

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

31

• We are predicting “branch not taken”
– need to add hardware for flushing instructions if we are wrong

Reg

RegIM DM

IM DM

DM

Reg

Reg

RegIM

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

Reg

Improving Performance

• Try and avoid stalls! E.g., reorder these instructions:

lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

Add a “branch delay slot”

32

• Add a “branch delay slot”
– the next instruction after a branch is always executed
– rely on compiler to “fill” the slot with something useful

• Superscalar: start more than one instruction in the same cycle

Other Issues in Pipelines

• Exceptions
– Errors in ALU for arithmetic instructions
– Memory non-availability

• Exceptions lead to a jump in a program
• However, the current PC value must be saved so that the program

can return to it back for recoverable errors

33

• Multiple exception can occur in a pipeline
• Preciseness of exception location is important in some cases
• I/O exceptions are handled in the same manner

Handling Branches

• Branch Prediction
– Usually we may simply assume that branch is not taken
– If it is taken, then we flush the pipeline

• Clear control signals for instruction following branch
• Delayed branch

– Fill instructions that need to be executed even if branch occur

34

– If none available fill NOOPs
• Reduce delay in resolving branches

– Compare at register stage
– Branch prediction table

• PC value (for branch) and next address
• One or two bits to store what should be prediction

Two State vs Four State Branch Prediction

• Two state model

• Four State Model

Predict
Taken

Predict
Not

TakenTaken
Not Taken

Not TakenTaken

35

Predict
Not

Taken

Predict
Not

TakenTaken

Not Taken

Not Taken

Taken

Predict
Taken

Predict
TakenTaken

Not Taken

Not TakenTaken

Pipeline with Early Branch Resolution/Exception

36

Superscalar Architecture

37

A Modern Pipelined Microprocessor

38

Important Facts to Remember

• Pipelined processors divide the execution in multiple steps
• However pipeline hazards reduce performance

– Structural, data, and control hazard
• Data forwarding helps resolve data hazards

– But all hazards cannot be resolved
S

39

– Some data hazards require bubble or noop insertion
• Effects of control hazard reduced by branch prediction

– Predict always taken, delayed slots, branch prediction
table

– Structural hazards are resolved by duplicating resources

• We have 5 stages. What needs to be controlled in each stage?
– Instruction Fetch and PC Increment
– Instruction Decode / Register Fetch
– Execution
– Memory Stage
– Write Back

• How would control be handled in an automobile plant?

Pipeline control

40

– a fancy control center telling everyone what to do?
– should we use a finite state machine?

Pipeline Control

Branch
4

RegWrite

IF/ID ID/EX EX/MEM MEM/WB

PCSrc

Add Add�
result

Shift�
left 2

Add

0

1

M�
u�
x

41

PC

Instruction�
memory

Address

In
st

ru
ct

io
n

Instruction�
[20– 16]

MemtoReg

ALUOp

RegDst

ALUSrc

16 32
Instruction�
[15– 0]

0

0
Registers

Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Sign�
extend

M�
u�
x

1
Write�
data

Read�
data M�

u�
x

1

ALU�
control MemRead

Instruction�
[15– 11]

6

MemWrite

Address

Data�
memory

Zero
ALU�

result
ALU

Zero

0

1

M�
u�
x

• Pass control signals along just like the data

Pipeline Control

Execution/Address Calculation
stage control lines

Memory access stage
control lines

stage control
lines

Instruction
Reg
Dst

ALU
Op1

ALU
Op0

ALU
Src Branch

Mem
Read

Mem
Write

Reg
write

Mem to
Reg

R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X

42

C on tro l

E X

M

W B

M

W B

W B

IF /ID ID /E X E X /M E M M E M /W B

In struc tio n

Data Path with Control

Add

Branch

ALUSrc

4 Add Add�
result

Shift�
left 2

R
eg

W
rit

e
Control

EX

M

WB

M

WB

WBIF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M�
u�
x

0

1

W
rit

e

43

PC

Instruction�
memory

In
st

ru
ct

io
n

Instruction�
[20– 16]

M
em

to
R

eg

ALUOp

RegDst

16 32Instruction�
[15– 0]

0

0

M�
u�
x

0

1

Registers
Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Sign�
extend

M�
u�
x

1

ALU�
result

Zero

Write�
data

Read�
data

M�
u�
x

1

ALU�
control

MemRead

ALU

Instruction�
[15– 11]

6

M
em

W

Address
Data�

memory

Address

Flushing Instructions

44

