
Pipelining

• Reconsider the data path we just did
• Each instruction takes from 3 to 5 clock cycles
• However, there are parts of hardware that are idle many time
• We can reorganize the operation
• Make each hardware block independent

– 1. Instruction Fetch Unit
2 R i t R d U it
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– 2. Register Read Unit
– 3. ALU Unit
– 4. Data Memory Read/Write Unit
– 5. Register Write Unit

• Units in 3 and 5 cannot be independent, but operations can be
• Let each unit just do its required job for each instruction
• If for some instruction, a unit need not do anything, it can simply 

perform a noop

Gain of Pipelining

• Improve performance by increasing instruction throughput
• Ideal speedup is number of stages in the pipeline
• Do we achieve this? No, why not?
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Pipelining

• What makes it easy
– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard?
structural hazards: suppose we had only one memory
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– structural hazards:   suppose we had only one memory
– control hazards:  need to worry about branch instructions
– data hazards:  an instruction depends on a previous instruction

• We’ll study these issues using a simple pipeline
• Other complication:

– exception handling
– trying to improve performance with out-of-order execution, etc.
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• What do we need to add to actually split the datapath into stages?
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Pipelined Data Path
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Can you find a problem even if there are no dependencies?  
What instructions can we execute to manifest the problem?
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Execution Time

• Time of n instructions depends on 
– Number of instructions n
– # of stages k
– # of control hazard and penalty of each step
– # of data hazards and penalty for each

1

7

• Time = n + k - 1 + load hazard penalty + branch penalty
• Load hazard penalty is 1 or 0 cycle 

– depending on data use with forwarding
• branch penalty is 3, 2, 1, or zero cycles depending on scheme

Design and Performance Issues With Pipelining

• Pipelined processors are not EASY to design
• Technology affect implementation
• Instruction set design affect the performance, i.e., beq, bne 
• More stages do not lead to higher performance
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Pipeline Operation

• In pipeline one operation begins in every cycle
• Also, one operation completes in each cycle
• Each instruction takes 5 clock cycles (k cycles in general)
• When a stage is not used, no control needs to be applied
• In one clock cycle, several instructions are active 
• Different stages are executing different instructions
• How to generate control signals for them is an issue
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How to generate control signals for them is an issue

Graphically Representing Pipelines
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• Can help with answering questions like:
– how many cycles does it take to execute this code?
– what is the ALU doing during cycle 4?
– use this representation to help understand datapaths

Instruction Format

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

REG 1 REG 2SW STORE ADDRESS                                   OFFSET

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

REG 1 REG 2LW LOAD ADDRESS                                     OFFSET

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

11

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

JUMP JUMP                                                                          ADDRESS

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

REG 1 REG 2BEQ/BNE BRANCH ADDRESS                               OFFSET

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

Operation for Each Instruction 

LW:

1. READ INST

2. READ REG 1

READ REG 2

SW:

1. READ INST

2. READ REG 1

READ REG 2

R-Type:

1. READ INST

2. READ REG 1

READ REG 2

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

JMP-Type:

1. READ 

INST

2. 
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3. ADD REG 1 + 
OFFSET 

4. READ MEM

5. WRITE REG2

3. ADD REG 1 + 
OFFSET 

4. WRITE MEM

5. 

3. OPERATE on 
REG 1 / REG 2 

4. 

5. WRITE DST

3. SUB REG 2 
from REG 1

4. 

5. 

3.  

4. 

5. 



Pipeline Data Path Operation
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Pipeline Data Path Operation
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• Problem with starting next instruction before first is finished
– dependencies that “go backward in time” are data hazards

Dependencies

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

Program�
execution�
order�

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20
Value of �
register $2:
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IM Reg

IM Reg

sub $2, $1, $3

order�
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

DM Reg

Reg

Reg

Reg

DM

• Consider the following program

add $t0, $t1, $t2
add $t1, $t0, $t3
and $t2, $t4, $t0
or $t3, $t1, $t0
slt $t4 $t2 $t3

A program with data dependencies
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slt $t4, $t2, $t3

• Problem with starting next instruction before first is finished
– dependencies that “go backward in time” are data hazards

Data Path Operation
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and $t2, $t4, $t0

or $t3, $t1, $t0

slt $t4, $t2, $t3

• Have compiler guarantee no hazards
• Where do we insert the “no-ops” ?

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

Solution: Software No-ops/Hardware Bubbles
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Problem:  this really slows us down!
– Also, the program will always be slow even if a techniques like 

forwarding is employed afterwards in newer version

• Hardware can detect dependencies and insert no-ops in hardware
– Hardware detection and no-op insertion is called stalling
– This is a bubble in pipeline and waste one cycle at all stages
– Need two or three bubbles between write and read of a register

Hazard Detection Unit

• Stall by letting an instruction that won’t write anything go forward
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Stalling

• Hardware detection and no-op insertion is called stalling
• We stall the pipeline by keeping an instruction in the same stage
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and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Reg

Reg

IM DM

IM Reg DM RegIM

IM DM Reg

IM DM Reg

RegReg

Reg

bubble



Stalled Operation (no write before read)
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Stalled Operation (write before read)
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• EX hazard
– If ((EX/MEM.RegWrite) and (EX/MEM.RegisterRd != 0) and

(EX/MEM.REgisterRd = ID/EX.RegisterRs)) ForwardA = 10
– If ((EX/MEM.RegWrite) and (EX/MEM.RegisterRd != 0) and

(EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

• MEM hazard
– If ((MEM/WB.RegWrite) and (MEM/WB.REgisterRd != 0) and

(MEM/WB.REgisterRd = ID/EX.RegisterRs)) ForwardA = 01

Detecting Hazards for Forwarding
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( g g ))
– If ((MEM/WB.RegWrite) and (MEM/WB.REgisterRd != 0) and

(MEM/WB.REgisterRd = ID/EX.RegisterRt)) ForwardB = 10

• In case of lw followed by a sw instruction, forwarding will not 
work. This is because data in MEM stage are still being read
– Plan on adding forwarding in MEM stage of put a stall/bubble

• In case of lw followed by an instruction that uses the value
– One has to add an stall

• Use temporary results, don’t wait for them to be written
– register file forwarding to handle read/write to same register
– ALU forwarding
– May also need forwarding to memory (think!!)

Forwarding

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20Value of register $2 :
X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

28what if this $2 was $13?
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• Load word can still cause a hazard:
– an instruction tries to read a register following a load instruction 

that writes to the same register.

Can't always forward
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• When we decide to branch, other instructions are in the pipeline!

Branch Hazards

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program�
execution�
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IM Reg

IM DM

DM Reg

Reg Reg44 and $12, $2, $5

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9
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• We are predicting “branch not taken”
– need to add hardware for flushing instructions if we are wrong

Reg

RegIM DM

IM DM

DM

Reg

Reg

RegIM

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

Reg

Improving Performance

• Try and avoid stalls!  E.g., reorder these instructions:

lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

Add a “branch delay slot”
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• Add a “branch delay slot”
– the next instruction after a branch is always executed
– rely on compiler to “fill” the slot with something useful

• Superscalar:  start more than one instruction in the same cycle

Other Issues in Pipelines

• Exceptions
– Errors in ALU for arithmetic instructions
– Memory non-availability

• Exceptions lead to a jump in a program
• However, the current PC value must be saved so that the program 

can return to it back for recoverable errors
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• Multiple  exception can occur in a pipeline
• Preciseness of exception location is important in some cases
• I/O exceptions are handled in the same manner

Handling Branches

• Branch Prediction
– Usually we may simply assume that branch is not taken
– If it is taken, then we flush the pipeline

• Clear control signals for instruction following branch
• Delayed branch

– Fill instructions that need to be executed even if branch occur
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– If none available fill NOOPs
• Reduce delay in resolving branches

– Compare at register stage
– Branch prediction table

• PC value (for branch) and next address
• One or two bits to store what should be prediction

Two State vs Four State Branch Prediction

• Two state model

• Four State Model

Predict
Taken

Predict 
Not

TakenTaken
Not Taken

Not TakenTaken
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Predict
Taken

Predict 
TakenTaken

Not Taken

Not TakenTaken

Pipeline with Early Branch Resolution/Exception
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Superscalar Architecture
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A Modern Pipelined Microprocessor
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Important Facts to Remember

• Pipelined processors divide the execution in multiple steps
• However pipeline hazards reduce performance

– Structural, data, and control hazard
• Data forwarding helps resolve data hazards

– But all hazards cannot be resolved
S
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– Some data hazards require bubble or noop insertion
• Effects of control hazard reduced by branch prediction

– Predict always taken, delayed slots, branch prediction 
table

– Structural hazards are resolved by duplicating resources

• We have 5 stages.  What needs to be controlled in each stage?
– Instruction Fetch and PC Increment
– Instruction Decode / Register Fetch
– Execution
– Memory Stage
– Write Back

• How would control be handled in an automobile plant?

Pipeline control
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– a fancy control center telling everyone what to do?
– should we use a finite state machine?

Pipeline Control
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• Pass control signals along just like the data

Pipeline Control

Execution/Address Calculation 
stage control lines

Memory access stage 
control lines

stage control 
lines

Instruction
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ALU 
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ALU 
Op0

ALU 
Src Branch
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Read
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R-format 1 1 0 0 0 0 0 1 0
lw 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X
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Data Path with Control
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