Pipelining

« Reconsider the data path we just did
« Each instruction takes from 3 to 5 clock cycles
« However, there are parts of hardware that are idle many time
* We can reorganize the operation
* Make each hardware block independent
— 1. Instruction Fetch Unit
— 2. Register Read Unit
— 3. ALU Unit
— 4. Data Memory Read/Write Unit
— 5. Register Write Unit
« Unitsin 3and 5 cannot be independent, but operations can be
« Let each unit just do its required job for each instruction
« If for some instruction, a unit need not do anything, it can simply
perform a noop

Gain of Pipelining

« Improve performance by increasing instruction throughput
« Ideal speedup is number of stages in the pipeline
« Do we achieve this? No, why not?

Program

Pipelining

+ What makes it easy
— all instructions are the same length
— just afew instruction formats
— memory operands appear only in loads and stores

+ What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

+ We'll study these issues using a simple pipeline
+ Other complication:
— exception handling
— trying to improve performance with out-of-order execution, etc.

oetuion 2 . s T
order| Time.
(in instructions)
wst 1000 [el aw | 200 e
w52, 200(50) s ’[‘"s;;;‘f“g""lml AL lj;:; lm
w3, 300(0) s rsvon
Bns -
Program
cxesuton > . s LI R CR)
: Time :
i mstructions)
wan oo [l ool aw | om0 [ees
53, 300(80) e e B T I O
R T TR
IF: Instruction feich | 1D: Instuction decode/ | EX: ExccutelD | MEN: Memory access | W8 Wrke back
feqiste Tl rea address caleulation

« What do we need to add to actually split the datapath into stages?

Pipelined Data Path

Can you find a problem even if there are no dependencies?
What instructions can we execute to manifest the problem?

Corrected Data Path

o oiEx B0 e

nsrucin

Execution Time

+ Time of n instructions depends on
— Number of instructions n
— #of stages k
— #of control hazard and penalty of each step
— # of data hazards and penalty for each
« Time=n+k-1+load hazard penalty + branch penalty
+ Load hazard penalty is 1 or 0 cycle
— depending on data use with forwarding
« branch penalty is 3, 2, 1, or zero cycles depending on scheme

Design and Performance Issues With Pipelining

« Pipelined processors are not EASY to design

« Technology affect implementation

« Instruction set design affect the performance, i.e., beq, bne
* More stages do not lead to higher performance

a0

Relafive performance

7
Pipeline Operation
« Inpipeline one operation begins in every cycle
« Also, one operation completes in each cycle
« Each instruction takes 5 clock cycles (k cycles in general)
+ When a stage is not used, no control needs to be applied
« Inone clock cycle, several instructions are active
« Different stages are executing different instructions
+ How to generate control signals for them is an issue
9
Instruction Format
31 26 25 2120 1615 1110 6 5 0
w REG 1 REG 2 LOAD ADDRESS OFFSET
31 26 25 2120 1615 1110 6 5 0
W REG 1 ‘ REG 2 STORE ADDRESS OFFSET
31 26 25 21 20 16 15 1110 6 5 0
R-TYPE REG 1 REG 2 DST SHIFT AMOUNT | ADD/AND/OR/SLT
31 26 25 2120 1615 1110 6 5 0
BEQ/BNE REG 1 REG 2 BRANCH ADDRESS OFFSET
31 26 25 21 20 1615 1110 6 5 0
Jump Jump ADDRESS
11

2 4 s 16
Pipaline depth
8
Graphically Representing Pipelines
Time (in clock cycles)
Programty, cc1 ccz cca cca ccs cce
orderc
(in instructions)
e [I -m.l.a eI
[I -.I.’ I T HE]
« Can help with answering questions like:
— how many cycles does it take to execute this code?
— what is the ALU doing during cycle 4?
— use this representation to help understand datapaths
10
Operation for Each Instruction
LW: SW: R-Type: BR-Type: JMP-Type:
1.READ INST |1.READ INST |1.READINST |1.READ INST |1.READ
INST
2.READREG1|2.READREG1|2.READREG1|2. READREG1 | 2.
READ REG 2 READREG2| READREG2| READREG2
3.ADD REG 1 +|3. ADD REG 1 +| 3. OPERATE on |3. SUBREG 2 |3.
OFFSET OFFSET REG1/REG2 |fromREG1
4. READ MEM | 4. WRITE MEM | 4. 4. 4
5.WRITE REG2| 5. 5.WRITEDST |5. 5

12

Pipeline Data Path Operation

-

31-00

INST
MEMORY

Cona_

7

15-00 £
£ — | N,
/ A
3126 o
1>
e sl
2000 U
X
15-11°

[*ls-21RAL
R

o1 [

L—+120-16 RA2

L\
u-H
X Ll
REG FILE TR u
RD2 '\S M — X
WA WI‘) MR i

Fetch Unit

Jump Register Address

Jump Address
NPC
o0 INST
INST
MEMORY

Branch Address

14

ALU Operation and Branch Logic

15-00 @

13
Register Fetch Unit
\C\on rol ||
31-26 -
NPC —_——
20-00
[Ties21RAL
RD1
INST p—d—p120-16 RA2
REG FILE
RD2
WA WD
15
Memory and Write back Stage
WRITE DATA WD
M Data Read
E
M
ADDR| *ARDR u
—_——— =X
Data ALU
17

»’\‘
A
}g }—‘ Branch address
/
20116 v
INST 20-00 M
g Reg Write Address
151 Write Data
RDL | M
uH
X
ALU OUTPUT
RD2 M M
v u
x| Loix
16
Pipeline Data Path Operation
\—»
{ Control - 00 N
| N
. ‘. }A '_
D
3126
D/
Do r v
20-00 v
L/ x
1511 wo
[i2s-21 RAlRDl N | e ™
—{ UM 3
Hl 016 rA2 X M — M
a0 REG FILE TR u
INST RD2 _»’S M —— =X
u
MEMORY WA WD L) L x

|

18

Dependencies

« Problem with starting next instruction before first is finished
— dependencies that “go backward in time” are data hazards

Vaeofo CC1 CC2 cC3 cc4 cCs cos cc7 ccs cco
register$2: 10 10 10 © e 2 w2 -
Program
order
(innsiructions)

b s2,51,53
and $12,52,35
or$13,56

add 514

w15, 100

19

A program with data dependencies

« Consider the following program

add $to0, $t1, $t2
add $t1, $t0, $t3
and $t2, $t4, $t0
or $t3, $t1, $t0
slt $t4, $t2, $t3

« Problem with starting next instruction before first is finished
— dependencies that “go backward in time” are data hazards

Data Path Operation

c1 c2 cs c6 c7 c8 c9

NS
Fm F.LE B\ Mg@ggv

or $t3, $t1, $tO
FETCH| FILE
t

slt $t4, $t2, $t3

Hazard Detection Unit

« Stall by letting an instruction that won't write anything go forward

w
Registers M
i ‘ - ‘E
memory
w

1FID Regsterd ed] v LL

IDIEX RegiserPt 8

MEWWS Regiserid

23

20
Solution: Software No-ops/Hardware Bubbles
* Have compiler guarantee no hazards
* Where do we insert the “no-ops” ?
sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)
Problem: this really slows us down!
— Also, the program will always be slow even if a techniques like
forwarding is employed afterwards in newer version
« Hardware can detect dependencies and insert no-ops in hardware
— Hardware detection and no-op insertion is called stalling
— This is a bubble in pipeline and waste one cycle at all stages
— Need two or three bubbles between write and read of a register
22
Stalling
* Hardware detection and no-op insertion is called stalling
« We stall the pipeline by keeping an instruction in the same stage
ProgramC]
excoutiont] cc1 cc2 cca cc4 oc5 Cc6 CCT CCB CC9 CCIO
orderC]
(ininstructions)
w2, 20(81)
and $4, 52, $6
or $8, 52, 86
{
O
Y =
SIS, $6, 57 m I'@ll" IHI
24

Stalled Operation (no write before read)

c1 c2 c3 c4 cs c6 cr c8 c9

DATA
MEMORY,
H
7

INST REG DATA
FETCH| F‘i—E MEMORY.
H

add $t1, $t0, $t3 25

Stalled Operation (write before read)

c1 c2 c3 ca cs c6 cr cs c9

add $t1, $t0, u;

Detecting Hazards for Forwarding

* EXhazard
— If ((EX/MEM.RegWrite) and (EX/MEM.RegisterRd != 0) and
(EX/MEM.REgisterRd = ID/EX.RegisterRs)) ForwardA = 10
— If ((EX/MEM.RegWrite) and (EX/MEM.RegisterRd != 0) and
(EX/MEM.RegisterRd = ID/EX.RegisterRt)) Forward = 10
* MEM hazard
— If ((MEM/WB.RegWrite) and (MEM/WB.REgisterRd != 0) and
(MEM/WB.REgisterRd = ID/EX.RegisterRs)) ForwardA = 01
— If ((MEM/WB.RegWrite) and (MEM/WB.REgisterRd 1= 0) and
(MEM/WB.REgisterRd = ID/EX.RegisterRt)) ForwardB = 10

* In case of lw followed by a sw instruction, forwarding will not
work. This is because data in MEM stage are still being read
— Plan on adding forwarding in MEM stage of put a stall/bubble
« In case of Iw followed by an instruction that uses the value
— One has to add an stall

DATA
F"iE MEMORY.
and $t2, $t4, $tO
26
Forwarding
* Usetemporary results, don’t wait for them to be written
— register file forwarding to handle read/write to same register
— ALU forwarding
— May also need forwarding to memory (think!!)
Time (i clock
cc1 ccz cca cca ccs ces ccr ccs ccs

Value of registers2 10 10 10 0 w0k -2 -2 w0 -2
Value of EXIVEM : X X X - x x
Vale of MEMWE X x X x - x x x x

Program]

(i mstructons)

sub 52, 51,53

ands12,52.55

ors1a, 86,

add s14,52.

W RS 82 was 5137

28

27
Forwarding
AN 5l
{corel . (=N
- U 1 L]
[— N
IFIDRegsterRt R
IFIDRegisterRt R
IFIDRegsierRd Rd
29

Can't always forward

« Load word can still cause a hazard:
— an instruction tries to read a register following a load instruction
that writes to the same register.

Time (in clock cycles)

Program 0l cc1 cc2 ccs cca ccs cce ccr ccs cco

(in instructions)
w 52, 20(51)

add $9

slts1, 56,57

+ Thus, we need a hazard detection unit to “stall” the load instruction

30

Branch Hazards

+ When we decide to branch, other instructions are in the pipeline!

Programt Time (in clock cycles)
executionty cc1 ccz ccs cca ccs5 CC6 CC7 CCB CCO

(in instructions)

=Y T I
I

44.and $12, $2, 55
48 or $13, $6, 52

52 add $14, $2, 52

72w $4, 50(87)

« We are predicting “branch not taken”
— need to add hardware for flushing instructions if we are wrong

Improving Performance

« Try and avoid stalls! E.g., reorder these instructions:

Iw $t0, 0($tl)
Iv $t2, 4($t1)
sw $t2, 0($tl)
sw $t0, 4($tl)

* Add a“branch delay slot”
— the next instruction after a branch is always executed

— rely on compiler to “fill” the slot with something useful

« Superscalar: start more than one instruction in the same cycle

32

31
Other Issues in Pipelines
« Exceptions
— Errors in ALU for arithmetic instructions
— Memory non-availability
+ Exceptions lead to ajump in a program
+ However, the current PC value must be saved so that the program
can return to it back for recoverable errors

+ Multiple exception can occur in a pipeline

« Preciseness of exception location is important in some cases

* 1/0O exceptions are handled in the same manner
33

Handling Branches

« Branch Prediction
— Usually we may simply assume that branch is not taken
— Ifitis taken, then we flush the pipeline
« Clear control signals for instruction following branch
« Delayed branch
— Fill instructions that need to be executed even if branch occur
— If none available fill NOOPs
* Reduce delay in resolving branches
— Compare at register stage
— Branch prediction table
« PC value (for branch) and next address
« One or two bits to store what should be prediction

34

Two State vs Four State Branch Prediction

« Two state model

Not Taken Predict
Taken | Not Not Taken
Jaken

« Four State Model

Taken Not Taken Predict

Taken

Taken

Not Taken Not Taken

Taken

35

Pipeline with Early Branch Resolution/Exception

Superscalar Architecture

A Modern Pipelined Microprocessor

[y
productin

P —

1T 1 1 1
T ot]

Heardar
batTar

38

Important Facts to Remember

« Pipelined processors divide the execution in multiple steps
+ However pipeline hazards reduce performance
— Structural, data, and control hazard
« Dataforwarding helps resolve data hazards
— But all hazards cannot be resolved
— Some data hazards require bubble or noop insertion
« Effects of control hazard reduced by branch prediction
— Predict always taken, delayed slots, branch prediction
table
— Structural hazards are resolved by duplicating resources

39

Pipeline Control

41

Pipeline control
* We have 5 stages. What needs to be controlled in each stage?
— Instruction Fetch and PC Increment
— Instruction Decode / Register Fetch
— Execution
— Memory Stage
— Write Back
* How would control be handled in an automobile plant?
— afancy control center telling everyone what to do?
— should we use a finite state machine?
40
Pipeline Control
« Pass control signals along just like the data
Execution/Address Calculation | Memory access stage | stage control
age control line; control lines. lines
Reg ALU ALU ALU Mem Mem Reg [Mem to
Dst | op1 | 0po | Src [Branch| Read | Write | write | Req
R-format 1 1 0 0 0 0 0 1 (]
v 0 0 0 1 0 1 0 1 1
sw X 0 0 1 0 0 1 0 X
beq X 0 1 0 1 0 0 0 X
{control
\ o
== ’
IF/D ID/EX EXIMEM MEM/WB
42

Data Path with Control

43

Flushing Instructions

