
• We will design a simplified MIPS processor
• The instructions supported are

– memory-reference instructions: lw, sw
– arithmetic-logical instructions: add, sub, and, or, slt
– control flow instructions: beq, j

• Generic Implementation:

Datapath & Control Design

1

– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?

• We need an ALU
– We have already designed that

• We need memory to store inst and data
– Instruction memory takes address and supplies inst
– Data memory takes address and supply data for lw
– Data memory takes address and data and write into memory

W d t PC d it d t h i

What blocks we need

2

• We need to manage a PC and its update mechanism
• We need a register file to include 32 registers

– We read two operands and write a result back in register file
• Some times part of the operand comes from instruction
• We may add support of immediate class of instructions
• We may add support for J, JR, JAL

Simple Implementation

• Include the functional units we need for each instruction

PC

Instruction�
memory

Instruction�
address

Instruction Add Sum

16 32
Sign�

extend

MemWrite

Data�
memory

Write�
data

Read�
data

Address

3

Why do we need this stuff?

a. Instruction memory b. Program counter c. Adder

ALU control

RegWrite

Registers
Write�
register

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Write�
data

ALU�
result

ALU

Data

Data

Register�
numbers

a. Registers b. ALU

Zero
5

5

5 3

b. Sign-extension unit

MemRead

a. Data memory unit

• Abstract / Simplified View:

More Implementation Details

Registers
Register #

Data

Register #

Data�
memory

Address

Register #

PC Instruction ALU

Instruction�
memory

Address

4

• Two types of functional units:
– elements that operate on data values (combinational)

• Example: ALU
– elements that contain state (sequential)

• Examples: Program and Data memory, Register File

Data

• Unclocked vs. Clocked
• Clocks used in synchronous logic

– when should an element that contains state be updated?

falling edge

Managing State Elements

5

cycle time
rising edge

MIPS Instruction Format

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2 BRANCH ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2SW STORE ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2LW LOAD ADDRESS OFFSET

6

31 26 25 21 20 16 15 11 10 6 5 0

JUMP JUMP ADDRESS

REG 1 REG 2BEQ/BNE/J BRANCH ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2I-TYPE IMMEDIATE DATA

Building the Datapath

• Use multiplexors to stitch them together

Add ALU�
result

M�
u�
x

R i t

Shift�
left 2

4

PCSrc

Add

7

PC

Instruction�
memory

Read�
address

Instruction

16 32

Registers

Write�
register
Write�
data

Read�
data 1

Read�
data 2

Read�
register 1
Read�
register 2

M�
u�
x

ALU operation3

RegWrite

MemRead

MemWrite
ALUSrc

MemtoReg

ALU�
result

Zero
ALU

Data�
memory

Address�
�

Write�
data

Read�
data M�

u�
x

Sign�
extend

A Complete Datapath for R-Type Instructions

• Lw, Sw, Add, Sub, And, Or, Slt can be performed
• For j (jump) we need an additional multiplexor

Add

RegWrite

4 0

M�
u�
x

1

Shift�
left 2

PCSrc

Add ALU�
result

8

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction�
memory

Read�
address

Instruction�
[31–0]

Instruction [20–16]

Instruction [25–21]

Instruction [5–0]

16 32Instruction [15–0]

0
Registers

Write�
register
Write�
data

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1
Read�
register 2

Sign�
extend

ALU�
result

Zero

Data�
memory

Address Read�
data M�

u�
x

1

0

M�
u�
x

1

0

M�
u�
x

1

Instruction [15–11]

ALU�
control

ALU

What Else is Needed in Data Path

• Support for j and jr
– For both of them PC value need to come from somewhere else
– For J, PC is created by 4 bits (31:28) from old PC, 26 bits from IR

(27:2) and 2 bits are zero (1:0)
– For JR, PC value comes from a register

• Support for JAL

9

Support for JAL
– Address is same as for J inst
– OLD PC needs to be saved in register 31

• And what about immediate operand instructions
– Second operand from instruction, but without shifting

• Support for other instructions like lw and immediate inst write

Operation for Each Instruction

LW:

1. READ INST

2. READ REG 1

READ REG 2

SW:

1. READ INST

2. READ REG 1

READ REG 2

R/I/S-Type:

1. READ INST

2. READ REG 1

READ REG 2

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

JMP-Type:

1. READ

INST

2.

10

3. ADD REG 1 +
OFFSET

4. READ MEM

5. WRITE REG2

3. ADD REG 1 +
OFFSET

4. WRITE MEM

5.

3. OPERATE on
REG 1 / REG 2

4.

5. WRITE DST

3. SUB REG 2
from REG 1

4.

5.

3.

4.

5.

Data Path Operation

M
U
X

PC

Shift
Left 2

25-00

25-21
INSTIA

4 A
D
D

M
U
XADD

RA1 RD1

jmp
AND

brzero

11

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

MEMORY
IA

INST
DATA

MEMORY

MA

MDWD

ALU

M
U
X

M
U
X

REG
FILE

RA2

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

WE
RDES

ALU
SRC

MR MW

Memreg

• All of the logic is combinational
• We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away
– we use write signals along with clock to determine when to write

• Cycle time determined by length of the longest path

Our Simple Control Structure

12
We are ignoring some details like setup and hold times

Clock cycle

State�
element�

1
Combinational logic

State�
element�

2

Control Points

M
U
X

PC

Shift
Left 2

25-00

25-21
INSTIA

4 A
D
D

M
U
XADD

RA1 RD1

jmp
AND

brzero

13

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

MEMORY
IA

INST
DATA

MEMORY

MA

MDWD

ALU

M
U
X

M
U
X

REG
FILE

RA2

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

WE
RDES

ALU
SRC

MR MW

Memreg

LW Instruction Operation

M
U
X

PC

Shift
Left 2

25-00

25-21
INSTIA

4 A
D
D

M
U
XADD

RA1 RD1

jmp
AND

brzero

14

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

MEMORY
IA

INST
DATA

MEMORY

MA

MDWD

ALU

M
U
X

M
U
X

REG
FILE

RA2

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

WE
RDES

ALU
SRC

MR MW

Memreg

SW Instruction Operation

M
U
X

PC

Shift
Left 2

25-00

25-21
INSTIA

4 A
D
D

M
U
XADD

RA1 RD1

jmp
AND

brzero

15

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

MEMORY
IA

INST
DATA

MEMORY

MA

MDWD

ALU

M
U
X

M
U
X

REG
FILE

RA2

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

WE
RDES

ALU
SRC

MR MW

Memreg

R-Type Instruction Operation

M
U
X

PC

Shift
Left 2

25-00

25-21
INSTIA

4 A
D
D

M
U
XADD

RA1 RD1

jmp
AND

brzero

16

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

MEMORY
IA

INST
DATA

MEMORY

MA

MDWD

ALU

M
U
X

M
U
X

REG
FILE

RA2

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

WE
RDES

ALU
SRC

MR MW

Memreg

BR-Instruction Operation

M
U
X

PC

Shift
Left 2

25-00

25-21
INSTIA

4 A
D
D

M
U
XADD

RA1 RD1

jmp
AND

brzero

17

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

MEMORY
IA

INST
DATA

MEMORY

MA

MDWD

ALU

M
U
X

M
U
X

REG
FILE

RA2

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

WE
RDES

ALU
SRC

MR MW

Memreg

Jump Instruction Operation

M
U
X

PC

Shift
Left 2

25-00

25-21
INSTIA

4 A
D
D

M
U
XADD

RA1 RD1

jmp
AND

brzero

18

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

MEMORY
IA

INST
DATA

MEMORY

MA

MDWD

ALU

M
U
X

M
U
X

REG
FILE

RA2

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

WE
RDES

ALU
SRC

MR MW

Memreg

Control

• For each instruction
– Select the registers to be read (always read two)
– Select the 2nd ALU input
– Select the operation to be performed by ALU
– Select if data memory is to be read or written
– Select what is written and where in the register file

19

– Select what goes in PC
• Information comes from the 32 bits of the instruction
• Example:

add $8, $17, $18 Instruction Format:
000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

Adding Control to DataPath

PC Read�
address

Instruction�
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4

0M�
0

Control

Add ALU�
result

M�
u�
x

0

1

Registers
Write�

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Shift�
left 2

ALU�
result

Zero

Read� 1
ALU

Address

20

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Instruction�
memory

Instruction [5– 0]

16 32Instruction [15– 0]

0

M�
u�
x

1

Write�
register

Write�
data

data 2

Sign�
extend

M�
u�
x

1

result

Data�
memory

Write�
data

data
M�
u�
x

1

Instruction [15– 11]

ALU�
control

Address

• ALU's operation based on instruction type and function code
– e.g., what should the ALU do with any instruction

• Example: lw $1, 100($2)

•
35 2 1 100

op rs rt 16 bit offset

ALU Control

21

op rs rt 16 bit offset

• ALU control input

000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

• Why is the code for subtract 110 and not 011?

• Must describe hardware to compute 3-bit ALU conrol input
– given instruction type

00 = lw, sw
01 = beq,
10 = arithmetic
11 = Jump

– function code for arithmetic

ALUOp
computed from instruction type

Other Control Information

22

• Control can be described using a truth table:

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

Implementation of Control

• Simple combinational logic to realize the truth tables

ALUOp1

ALUOp0

ALUOp

ALU control block

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

23

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

R-format Iw sw beq

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

A Complete Datapath with Control

24

Datapath with Control and Jump Instruction

25

Timing: Single Cycle Implementation

• Calculate cycle time assuming negligible delays except:
– memory (2ns), ALU and adders (2ns), register file access (1ns)

Add

RegWrite

4 0

M�
u�
x

1

Shift�
left 2

PCSrc

Add ALU�
result

26

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Instruction [5– 0]

16 32Instruction [15– 0]

0
Registers

Write�
register
Write�
data

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1
Read�
register 2

Sign�
extend

ALU�
result

Zero

Data�
memory

Address Read�
data M�

u�
x

1

0

M�
u�
x

1

0

M�
u�
x

1

Instruction [15– 11]

ALU�
control

ALU

Where we are headed

• Design a data path for our machine specified in the next 3 slides
• Single Cycle Problems:

– what if we had a more complicated instruction like floating point?
– wasteful of area

• One Solution:
– use a “smaller” cycle time and use different numbers of cycles

for each instruction using a “multicycle” datapath:

27

for each instruction using a multicycle datapath:

PC

Memory

Address

Instruction�
or data

Data

Instruction�
register

Registers
Register #

Data

Register #

Register #

ALU

Memory�
data �

register

A

B

ALUOut

• 16-bit data path (can be 4, 8, 12, 16, 24, 32)
• 16-bit instruction (can be any number of them)
• 16-bit PC (can be 16, 24, 32 bits)
• 16 registers (can be 1, 4, 8, 16, 32)
• With m register, log m bits for each register
• Offset depends on expected offset from registers

Branch offset depends on expected jump address

Machine Specification

28

• Branch offset depends on expected jump address
• Many compromise are made based on number of bits in instruction

• LW R2, #v(R1) ; Load memory from address (R1) + v
• SW R2, #v(R1) ; Store memory to address (R1) + v
• R-Type – OPER R3, R2, R1 ; Perform R3 R2 OP R1

– Five operations ADD, AND, OR, SLT, SUB
• I-Type – OPER R2, R1, V ; Perform R2 R1 OP V

– Four operation ADDI, ANDI, ORI, SLTI
• B-Type – BC R2, R1, V; Branch if condition met to address PC+V

– Two operation BNE, BEQ

Instruction

29

p
• Shift class – SHIFT TYPE R2, R1 ; Shift R1 of type and result to R2

– One operation
• Jump Class -- JAL and JR (JAL can be used for Jump)

– What are th implications of J vs JAL
– Two instructions

• LW/SW/BC – Requires opcode, R2, R1, and V values
• R-Type – Requires opcode, R3, R2, and R1 values
• I-Type – Requires opcode, R2, R1, and V values
• Shift class – Requires opcode, R2, R1, and shift type value
• JAL requires opcode and jump address
• JR requires opcode and register address
• Opcode – can be fixed number or variable number of bits

Instruction bits needed

30

• Register address – 4 bits if 16 registers
• How many bits in V?
• How many bits in shift type?

– 4 for 16 types, assume one bit shift at a time
• How many bits in jump address?

