
• We will design a simplified MIPS processor
• The instructions supported are

– memory-reference instructions:  lw, sw 
– arithmetic-logical instructions:  add, sub, and, or, slt
– control flow instructions:  beq, j

• Generic Implementation:

Datapath & Control Design
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– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why?  memory-reference?  arithmetic? control flow?

• We need an ALU
– We have already designed that

• We need memory to store inst and data
– Instruction memory takes address and supplies inst
– Data memory takes address and supply data for lw
– Data memory takes address and data and write into memory

W d t PC d it d t h i

What blocks we need
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• We need to manage a PC and its update mechanism
• We need a register file to include 32 registers

– We read two operands and write a result back in register file
• Some times part of the operand comes from instruction
• We may add support of immediate class of instructions
• We may add support for J, JR, JAL

Simple Implementation

• Include the functional units we need for each instruction
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Why do we need this stuff?

a. Instruction memory b. Program counter c. Adder

ALU control
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• Abstract / Simplified View:

More Implementation Details
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• Two types of functional units:
– elements that operate on data values (combinational)

• Example: ALU
– elements that contain state (sequential)

• Examples: Program and Data memory, Register File

Data

• Unclocked vs. Clocked
• Clocks used in synchronous logic 

– when should an element that contains state be updated?

falling edge

Managing State Elements
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cycle time
rising edge

MIPS Instruction Format

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

REG 1 REG 2 BRANCH ADDRESS OFFSET

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

REG 1 REG 2SW STORE ADDRESS                                   OFFSET

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

REG 1 REG 2LW LOAD ADDRESS                                     OFFSET
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31                            26  25                      21  20                          16 15                       11 10  6     5                            0

JUMP JUMP                                                                          ADDRESS

REG 1 REG 2BEQ/BNE/J BRANCH ADDRESS                               OFFSET

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

31                            26  25                      21  20                          16 15                       11 10  6     5                            0

REG 1 REG 2I-TYPE IMMEDIATE DATA



Building the Datapath

• Use multiplexors to stitch them together
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Add
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A Complete Datapath for R-Type Instructions

• Lw, Sw, Add, Sub, And, Or, Slt can be performed
• For j (jump) we need an additional multiplexor
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16 32Instruction [15–0]
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What Else is Needed in Data Path

• Support for j and jr
– For both of them PC value need to come from somewhere else
– For J, PC is created by 4 bits (31:28) from old PC, 26 bits from IR 

(27:2) and 2 bits are zero (1:0)
– For JR, PC value comes from a register

• Support for JAL
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Support for JAL
– Address is same as for J inst
– OLD PC needs to be saved in register 31

• And what about immediate operand instructions
– Second operand from instruction, but without shifting

• Support for other instructions like lw and immediate inst write

Operation for Each Instruction 

LW:

1. READ INST

2. READ REG 1

READ REG 2

SW:

1. READ INST

2. READ REG 1

READ REG 2

R/I/S-Type:

1. READ INST

2. READ REG 1

READ REG 2

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

JMP-Type:

1. READ 

INST

2. 
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3. ADD REG 1 + 
OFFSET 

4. READ MEM

5. WRITE REG2

3. ADD REG 1 + 
OFFSET 

4. WRITE MEM

5. 

3. OPERATE on 
REG 1 / REG 2 

4. 

5. WRITE DST

3. SUB REG 2 
from REG 1

4. 

5. 

3.  

4. 

5. 

Data Path Operation
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• All of the logic is combinational
• We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away
– we use write signals along with clock to determine when to write

• Cycle time determined by length of the longest path

Our Simple Control Structure
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We are ignoring some details like setup and hold times

Clock cycle
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element�

1
Combinational logic
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element�

2



Control Points
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LW Instruction Operation
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SW Instruction Operation
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R-Type Instruction Operation
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BR-Instruction Operation
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Jump Instruction Operation

M
U
X

PC

Shift
Left 2

25-00

25-21
INSTIA

4 A
D
D

M
U
XADD

RA1 RD1

jmp
AND

brzero

18

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

MEMORY
IA

INST
DATA

MEMORY

MA

MDWD

ALU

M
U
X

M
U
X

REG
FILE

RA2

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

WE
RDES

ALU
SRC

MR MW

Memreg



Control

• For each instruction
– Select the registers to be read (always read two)
– Select the 2nd ALU input 
– Select the operation to be performed by ALU
– Select if data memory is to be read or written
– Select what is written and where in the register file
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– Select what goes in PC
• Information comes from the 32 bits of the instruction
• Example:

add $8, $17, $18 Instruction Format:
000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

Adding Control to DataPath

PC Read�
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Instruction�
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Instruction [20– 16]

Instruction [25– 21]
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Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Instruction�
memory

Instruction [5– 0]

16 32Instruction [15– 0]
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Instruction [15– 11]

ALU�
control

Address

• ALU's operation based on instruction type and function code 
– e.g., what should the ALU do with any instruction

• Example:  lw $1, 100($2)

•
35 2 1 100

op rs rt 16 bit offset

ALU Control
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op rs rt 16 bit offset

• ALU control input

000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

• Why is the code for subtract 110 and not 011?

• Must describe hardware to compute 3-bit ALU conrol input
– given instruction type 

00 = lw, sw
01 = beq, 
10 = arithmetic
11 = Jump

– function code for arithmetic

ALUOp 
computed from instruction type

Other Control Information
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• Control can be described using a truth table:

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

Implementation of Control

• Simple combinational logic to realize the truth tables

ALUOp1

ALUOp0

ALUOp

ALU control block

Op0
Op1
Op2
Op3
Op4
Op5

Inputs
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Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

R-format Iw sw beq

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

A Complete Datapath with Control
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Datapath with Control and Jump Instruction
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Timing: Single Cycle Implementation

• Calculate cycle time assuming negligible delays except:
– memory (2ns), ALU and adders (2ns), register file access (1ns)
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Where we are headed

• Design a data path for our machine specified in the next 3 slides
• Single Cycle Problems:

– what if we had a more complicated instruction like floating point?
– wasteful of area

• One Solution:
– use a “smaller” cycle time and use different numbers of cycles 

for each instruction using a “multicycle” datapath:
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for each instruction using a multicycle  datapath:

PC

Memory

Address

Instruction�
or data

Data

Instruction�
register

Registers
Register #

Data

Register #

Register #

ALU

Memory�
data �

register

A

B

ALUOut

• 16-bit data path (can be 4, 8, 12, 16, 24, 32)
• 16-bit instruction (can be any number of them)
• 16-bit PC (can be 16, 24, 32 bits)
• 16 registers (can be 1, 4, 8, 16, 32)
• With m register, log m bits for each register
• Offset depends on expected offset from registers

Branch offset depends on expected jump address

Machine Specification
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• Branch offset depends on expected jump address
• Many compromise are made based on number of bits in instruction

• LW R2, #v(R1) ; Load memory from address (R1) + v
• SW R2, #v(R1) ; Store memory to address (R1) + v
• R-Type – OPER R3, R2, R1 ; Perform R3 R2 OP R1

– Five operations ADD, AND, OR, SLT, SUB
• I-Type – OPER R2, R1, V ; Perform R2 R1 OP V

– Four operation ADDI, ANDI, ORI, SLTI
• B-Type – BC  R2, R1, V; Branch if condition met to address PC+V

– Two operation BNE, BEQ

Instruction
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p
• Shift class – SHIFT TYPE R2, R1 ; Shift R1 of type and result to R2

– One operation
• Jump Class -- JAL and JR (JAL can be used for Jump)

– What are th implications of J vs JAL
– Two instructions

• LW/SW/BC – Requires opcode, R2, R1, and V values
• R-Type – Requires opcode, R3, R2, and R1 values
• I-Type – Requires opcode, R2, R1, and V values
• Shift class – Requires opcode, R2, R1, and shift type value
• JAL requires opcode and jump address
• JR requires opcode and register address
• Opcode – can be fixed number or variable  number of bits

Instruction bits needed
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• Register address – 4 bits if 16 registers
• How many bits in V?
• How many bits in shift type?

– 4 for 16 types, assume one bit shift at a time
• How many bits in jump address? 


