
• Instructions are bits
• Programs are stored in memory

— to be read or written just like data

•

P M

memory for data, programs,
compilers, editors, etc.

Stored Program Concept

1

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory compilers, editors, etc.

Instructions:

• Language of the Machine
• More primitive than higher level languages

e.g., no sophisticated control flow
• Very restrictive

e.g., MIPS Arithmetic Instructions

2

• We’ll be working with the MIPS instruction set architecture
– similar to other architectures developed since the 1980's
– used by NEC, Nintendo, Silicon Graphics, Sony

Design goals: maximize performance and minimize cost, reduce design time

Architecture Specification

• Data types:
– bit, byte, bit field, signed/unsigned integers logical, floating point,

character
• Operations:

– data movement, arithmetic, logical, shift/rotate, conversion,
input/output, control, and system calls

• # of operands:

3

o ope a ds
– 3, 2, 1, or 0 operands

• Registers:
– integer, floating point, control

• Instruction representation as bit strings

Characteristics of Instruction Set

• Complete
– Can be used for a variety of application

• Efficient
– Useful in code generation

• Regular
– Expected instruction should exist

C tibl

4

• Compatible
– Programs written for previous versions of machines need it

• Primitive
– Basic operations

• Simple
– Easy to implement

• Smaller
– Implementation

Example of multiple operands

• Instructions may have 3, 2, 1, or 0 operands
• Number of operands may affect instruction length
• Operand order is fixed (destination first, but need not that way)

add $s0, $s1, $s2 ; Add $s2 and $s1 and store result in $s0

add $s0, $s1 ; Add $s1 and $s0 and store result in $s0

5

add $s0, $s ; dd $s a d $s0 a d sto e esu t $s0

add $s0 ; Add contents of a fixed location to $s0

add ; Add two fixed locations and store result

Where operands are stored

• Memory locations
– Instruction include address of location

• Registers
– Instruction include register number

• Stack location
– Instruction opcode implies that the operand is in stack

Fixed register

6

• Fixed register
– Like accumulator, or depends on inst
– Hi and Lo register in MIPS

• Fixed location
– Default operands like interrupt vectors

MIPS arithmetic

• All instructions have 3 operands
• Operand order is fixed (destination first)

Example:

C code: A = B + C

MIPS code: add $s0 $s1 $s2

7

MIPS code: add $s0, $s1, $s2

(associated with variables by compiler)

MIPS arithmetic

• Design Principle: simplicity favors regularity. Why?
• Of course this complicates some things...

C code: A = B + C + D;
E = F - A;

MIPS code: add $t0, $s1, $s2
add $s0, $t0, $s3
b $ 4 $ 5 $ 0

8

sub $s4, $s5, $s0

• Operands must be registers, only 32 registers provided
• Design Principle: smaller is faster. Why?

– More register will slow register file down.

• Instructions, like registers and words of data, are also 32 bits long
– Example: add $t0, $s1, $s2
– registers have numbers, $t0=9, $s1=17, $s2=18

• Instruction Format:

000000 10001 10010 01000 00000 100000

Machine Language

9

op rs rt rd shamt funct

Registers vs. Memory

Control Input

• Arithmetic instructions operands must be registers,
— only 32 registers provided

• Compiler associates variables with registers
• What about programs with lots of variables

10

Processor I/O

Control

Datapath

Memory

Input

Output

Memory Organization

• Viewed as a large, single-dimension array, with an address.
• A memory address is an index into the array
• "Byte addressing" means that the index points to a byte of memory.

0 8 bits of data

11

1
2
3
4
5
6
...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Memory Organization

• Bytes are nice, but most data items use larger "words"
• For MIPS, a word is 32 bits or 4 bytes.

0
4
8

12

32 bits of data

32 bits of data

32 bits of data

32 bits of data

Registers hold 32 bits of data

12

• 232 bytes with byte addresses from 0 to 232-1
• 230 words with byte addresses 0, 4, 8, ... 232-4
• Words are aligned

i.e., what are the least 2 significant bits of a word address?

12
...

32 bits of data

Addressing within a word

• Each word has four bytes
• Which byte is first and which is last
• Two Choices

– Least significant byte is byte “0” -> Little Endian
– Most significant byte is byte “0” -> Big Endian

13

...

0
4
8

12

0 1 2 3

4 5 6 7

8 9 10 11

……………….

...

0
4
8

12

3 2 1 0

7 6 5 4

11 10 9 8

……………….

Addressing

• Memory address for load and store has two parts
– A register whose content are known
– An offset stored in 16 bits

• The offset can be positive or negative
– It is written in terms of number of bytes
– It is but in instruction in terms of number of words

32 byte offset is written as 32 but stored as 8

14

– 32 byte offset is written as 32 but stored as 8
• Address is content of register + offset
• All address has both these components
• If no register needs to be used then use register 0

– Register 0 always stores value 0
• If no offset, then offset is 0

• Consider the load-word and store-word instructions,
– What would the regularity principle have us do?
– New principle: Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructions
– other format was R-type for register

Example: l $t0 32($ 2)

Machine Language

15

• Example: lw $t0, 32($s2)

35 18 9 32

op rs rt 16 bit number

• Where's the compromise?

Instructions

• Load and store instructions
• Example:

C code: A[8] = h + A[8];

MIPS code: lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0 32($s3)

16

sw $t0, 32($s3)

• Store word has destination last
• Remember arithmetic operands are registers, not memory!

Our First Example

• Can we figure out the code?

swap(int v[], int k);
{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

} swap:
muli $2, $5, 4

17

, ,
add $2, $4, $2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

So far we’ve learned:

• MIPS
— loading words but addressing bytes
— arithmetic on registers only

• Instruction Meaning

add $s1, $s2, $s3 $s1 = $s2 + $s3
sub $s1 $s2 $s3 $s1 = $s2 $s3

18

sub $s1, $s2, $s3 $s1 = $s2 – $s3
lw $s1, 100($s2) $s1 = Memory[$s2+100]
sw $s1, 100($s2) Memory[$s2+100] = $s1

• Decision making instructions
– alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

Control

19

q $, $,

• Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label:

• A simple conditional execution
• Depending on i==j or i!=j, result is different

Conditional Execution

20

• MIPS unconditional branch instructions:
j label

• Example:
f, g, and h are in registers $s3, $s4, and $s5

if (i!=j) beq $s4, $s5, Lab1
f=g-h; sub $s3, $s4, $s5

else j exit

Instruction Sequencing

21

f=g+h; Lab1: add $s3, $s4, $s5
exit: ...

• Can you build a simple for loop?

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4°$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

op rs rt 16 bit addressI

Branch Address Handling

22

• Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC
– address boundaries of 256 MB

So far:

• Instruction Meaning

add $s1,$s2,$s3 $s1 = $s2 + $s3
sub $s1,$s2,$s3 $s1 = $s2 – $s3
lw $s1,100($s2) $s1 = Memory[$s2+100]
sw $s1,100($s2) Memory[$s2+100] = $s1
bne $s4,$s5,L Next instr. is at Label if $s4 ° $s5
beq $s4,$s5,L Next instr. is at Label if $s4 = $s5
j Label Next instr is at Label

23

j Label Next instr. is at Label

• Formats:

op rs rt rd shamt funct

op rs rt 16 bit address

op 26 bit address

R

I

J

• We have: beq, bne, what about Branch-if-less-than?
• New instruction:

if $s1 < $s2 then
$t0 = 1

slt $t0, $s1, $s2 else
$t0 = 0

C thi i t ti t b ild " $ $ "

Control Flow

24

• Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

• Small constants are used quite frequently (50% of operands)
e.g., A = A + 5;

B = B + 1;
C = C - 18;

• Solutions? Why not?
– put 'typical constants' in memory and load them.
– create hard-wired registers (like $zero) for constants like one.

• MIPS Instructions:

Constants

25

MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

• How do we make this work?

Various Addressing Modes

26

To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.
Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

27

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load word lw $s1, 100($s2) $s1 = Memory[$s2 + 100] Word from memory to register
store word sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100] Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper immediate lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For switch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

Other Issues

• support for procedures (Refer to section 3.6), stacks, frames, recursion
• manipulating strings and pointers
• linkers, loaders, memory layout
• Interrupts, exceptions, system calls and conventions
• Register use convention

Name Register number Usage

28

$zero 0 the constant value 0
$v0-$v1 2-3 values for results and expression evaluation
$a0-$a3 4-7 arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved
$t8-$t9 24-25 more temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

• Register $29 is used as stack pointer
• Stack grows from high address to low address
• Stack pointer should point to the last filled address
• Once entries are removed, stack pointer should be adjusted

Stack Manipulation

29

• Stores the last address for the last frame
• When completing a subroutine, frame address can be used as the

starting stack pointer value

Frame Pointer

30

• We'd like to be able to load a 32 bit constant into a register
• Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

1010101010101010 0000000000000000

filled with zeros

How about larger constants?

31

• Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1010101010101010

1010101010101010 0000000000000000

0000000000000000 1010101010101010

1010101010101010 1010101010101010

ori

MIPS Instruction Format

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2 BRANCH ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2SW STORE ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2LW LOAD ADDRESS OFFSET

32

31 26 25 21 20 16 15 11 10 6 5 0

JUMP JUMP ADDRESS

REG 1 REG 2BEQ/BNE/J BRANCH ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2I-TYPE IMMEDIATE DATA

• 16-bit data path (can be 4, 8, 12, 16, 24, 32)
• 16-bit instruction (can be any number of them)
• 16-bit PC (can be 16, 24, 32 bits)
• 16 registers (can be 1, 4, 8, 16, 32)
• With m register, log m bits for each register
• Offset depends on expected offset from registers

Branch offset depends on expected jump address

Our Example Machine Specification

33

• Branch offset depends on expected jump address
• Many compromise are made based on number of bits in instruction

• LW R2, #v(R1) ; Load memory from address (R1) + v
• SW R2, #v(R1) ; Store memory to address (R1) + v
• R-Type – OPER R3, R2, R1 ; Perform R3 R2 OP R1

– Five operations ADD, AND, OR, SLT, SUB
• I-Type – OPER R2, R1, V ; Perform R2 R1 OP V

– Four operation ADDI, ANDI, ORI, SLTI
• B-Type – BC R2, R1, V; Branch if condition met to address PC+V

– Two operation BNE, BEQ

Instruction

34

p
• Shift class – SHIFT TYPE R2, R1 ; Shift R1 of type and result to R2

– One operation
• Jump Class -- JAL and JR (JAL can be used for Jump)

– What are th implications of J vs JAL
– Two instructions

• LW/SW/BC – Requires opcode, R2, R1, and V values
• R-Type – Requires opcode, R3, R2, and R1 values
• I-Type – Requires opcode, R2, R1, and V values
• Shift class – Requires opcode, R2, R1, and shift type value
• JAL requires opcode and jump address
• JR requires opcode and register address

O d b fi d b i bl b f bit

Instruction Encoding

35

• Opcode – can be fixed number or variable number of bits
• Register address – 4 bits if 16 registers
• How many bits in V?
• How many bits in shift type?

– 4 for 16 types, assume one bit shift at a time
• How many bits in jump address?

• Two fields Opcode
– Class of function and function in that class, may require more

bits as in each class functions needs to be encoded
• One level opcode

– In our example it is more optimal, 16 op codes are sufficient
• Each register takes 4 bits to encode
• Shift type requires four bits

Encoding Selection

36

• Shift type requires four bits
• To pack instructions in 16 bits

– V is 4 bits
– Branch offset 4 bits
– How many bits in jump address?

• Only 12 bits jump address required

• Only 4 bit immediate value
– It is ok as constants are usually small

• Only 4-bit LW/SW address offset
– This is real small
– Good for small programs

• 12-bit jump address
N t l li it ti

Trade Offs

37

– Not a real limitation
• Branch offset 4 bits

– Has constraints, but can be managed with jump
– Depends on types of program

• Instructions are few
– It is a quite a complete instruction set

• The instruction set is slightly redundant

Instruction Format

15 12 11 8 7 4 3 0

REG 3 REG 2R-TYPE REG 1

15 12 11 8 7 4 3 0

IMMED REG 2I-TYPE REG 1

15 12 11 8 7 4 3 0

OFFSET REG 2LW/SW/BNE/BEQ REG 1

38

OFFSET REG 2LW/SW/BNE/BEQ REG 1

15 12 11 8 7 4 3 0

TYPE REG 2SHIFT REG 1

15 12 11 8 7 4 3 0

Not Used Not UsedJR REG 1

15 12 11 8 7 4 3 0

JUMP ADDRESSJAL

Operation for Each Instruction

LW:

1. READ INST

2. READ REG 1

READ REG 2

SW:

1. READ INST

2. READ REG 1

READ REG 2

R/I/S-Type:

1. READ INST

2. READ REG 1

READ REG 2

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

JMP-Type:

1. READ

INST

2.

39

3. ADD REG 1 +
OFFSET

4. READ MEM

5. WRITE REG2

3. ADD REG 1 +
OFFSET

4. WRITE MEM

5.

3. OPERATE on
REG 1 & REG 2

4.

5. WRITE DST

3. SUB REG 2
from REG 1

4.

5.

3.

4.

5.

• Design alternative:
– provide more powerful operations
– goal is to reduce number of instructions executed
– danger is a slower cycle time and/or a higher CPI

• Sometimes referred to as “RISC vs. CISC”
virtually all new instruction sets since 1982 have been RISC

Alternative Architectures

40

– virtually all new instruction sets since 1982 have been RISC
– VAX: minimize code size, make assembly language easy

instructions from 1 to 54 bytes long!

• We’ll look at PowerPC and 80x86

PowerPC

• Indexed addressing
– example: lw $t1,$a0+$s3 #$t1=Memory[$a0+$s3]
– What do we have to do in MIPS?

• Update addressing
– update a register as part of load (for marching through arrays)
– example: lwu $t0 4($s3) #$t0=Memory[$s3+4];$s3=$s3+4

41

example: lwu $t0,4($s3) #$t0=Memory[$s3+4];$s3=$s3+4

– What do we have to do in MIPS?
• Others:

– load multiple/store multiple
– a special counter register “bc Loop”

decrement counter, if not 0 goto loop

80x86

• 1978: The Intel 8086 is announced (16 bit architecture)
• 1980: The 8087 floating point coprocessor is added
• 1982: The 80286 increases address space to 24 bits, +instructions
• 1985: The 80386 extends to 32 bits, new addressing modes
• 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions

(mostly designed for higher performance)
• 1997: MMX is added

42

• 1997: MMX is added

“This history illustrates the impact of the “golden handcuffs” of compatibility

“adding new features as someone might add clothing to a packed bag”

“an architecture that is difficult to explain and impossible to love”

