
• 32 bit signed numbers:
0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten
0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten
...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten
0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0000t = – 2,147,483,648t

maxint

minint

MIPS
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1000 0000 0000 0000 0000 0000 0000 0000two  2,147,483,648ten
1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten
...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten
1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten
1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

minint

• Takes three input bits and generates two output bits
• Multiple bits can be cascaded

One-Bit Adder
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• No overflow when adding a +ve and a -ve number
• No overflow when signs are the same for subtraction
• Overflow occurs when the value affects the sign:

– overflow when adding two +ves yields a -ve 
– or, adding two -ves gives a +ve

Detecting Overflow
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– or, subtract a -ve from a +ve and get a -ve
– or, subtract a +ve from a -ve and get a +ve

• Consider the operations A + B, and A – B
– Can overflow occur if B is 0 ?
– Can overflow occur if A is 0 ?

• An exception (interrupt) occurs
– Control jumps to predefined address for exception
– Interrupted address is saved for resumption

• Details based on software system / language
– example:  flight control vs. homework assignment

Effects of Overflow
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• Don't always want to detect overflow
— new MIPS instructions:  addu, addiu, subu

note:   addiu still sign-extends!
note:   sltu,  sltiu for unsigned comparisons

• Let's build an ALU to support 
– andi and ori instructions

– we'll just build a 1 bit ALU, and replicate
– operation op a b res

An ALU (arithmetic logic unit)
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• Possible Implementation (sum-of-products):

b
a result

• Not easy to decide the “best” way to build something
– Don't want too many inputs to a single gate
– Don’t want to have to go through too many gates
– for our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition:

Different Implementations

CarryIn
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• How could we build a 1-bit ALU for add, and, and or?
• How could we build a 32-bit ALU?

cout = a b + a cin + b cin
sum = a xor b xor cinSum

CarryIn

CarryOut

a

b



Building a 32 bit ALU

0

Result

Operation

a

1

CarryIn
R e su lt0

C arryIn

a0

b0

R e su lt1
a1

b1

O pe rat io n

A LU 0

C arry In

C arryO u t

A LU 1

C arry In

C arryO u t
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b
2

CarryOut

R e su lt31
a3 1

b3 1

R e su lt2
a2

b2

C arryO u t

A LU 2

C arry In

C arryO u t

A LU 3 1

C arry In

• Two's complement approach:  just negate b and add.
• How do we negate?

• A very clever solution:

What about subtraction  (a – b)  ?

Operation
CarryIn

Binvert
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0

2

Result

a

1

CarryOut

0

1

b

• Need to support the set-on-less-than instruction (slt)

– remember:  slt is an arithmetic instruction

– produces a 1 if rs < rt and 0 otherwise

– use subtraction:  (a-b) < 0 implies a < b

Tailoring the ALU to the MIPS
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• Need to support test for equality (beq $t5, $t6, $t7)

– use subtraction:  (a-b) = 0 implies a = b

Supporting slt

• Can we figure out the idea?
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• A Ripple carry ALU
• Two bits decide operation

– Add/Sub
– AND
– OR

A 32-bit ALU
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– LESS
• 1 bit decide add/sub 

operation
• A carry in bit
• Bit 31 generates overflow 

and set bit

Test for equality

• Notice control lines:

000 = and
001 = or
010 = add
110 = subtract
111 = slt

Result0a0

Result1a1

0

Operation

b0

b1

Bnegate

Zero

ALU0
Less

CarryIn

CarryOut

ALU1
Less

CarryIn

CarryOut
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111 = slt

•Note:  zero is a 1 
•when the result is zero!

Set
a31

0

Result2a2

0

b31

b2

Result31

Overflow

ALU2
Less

CarryIn

CarryOut

ALU31
Less

CarryIn



• Is a 32-bit ALU as fast as a 1-bit ALU?
• Is there more than one way to do addition?

– two extremes:  ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

Problem:  ripple carry adder is slow
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Can you see the ripple?  How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0
c2 = b1c1 + a1c1 + a1b1 c2 = 
c3 = b2c2 + a2c2 + a2b2   c3 = 
c4 = b3c3 + a3c3 + a3b3   c4 = 

Not feasible!  Why?

• An approach in-between our two extremes
• Motivation: 

– If we didn't know the value of carry-in, what could we do?
– When would we always generate a carry?     gi = ai bi 
– When would we propagate the carry?             pi = ai + bi

• Did we get rid of the ripple?

Carry-look-ahead adder
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c1 = g0 + p0c0 
c2 = g1 + p1c1    c2 = g1+p1g0+p1p0c0 
c3 = g2 + p2c2 c3 = g2+p2g1+p2p1g0+p2p1p0c0
c4 = g3 + p3c3 c4 = g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0c0

Feasible!  Why?

• Generate g and p term for 
each bit

• Use g’s, p’s and carry in to 
generate all C’s 
Al th t t

A 4-bit carry look-ahead adder
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• Also use them to generate 
block G and P

• CLA principle can be used 
recursively 

• A 16 bit adder uses four 4-bit 
adders

• It takes block g and p terms 
and cin to generate block 
carry bits out

Use principle to build bigger adders
CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

C1

P0
G0

P1

pi
gi

pi + 1

ci + 1

a0�
b0�
a1�
b1�
a2�
b2�
a3�
b3

a4�
b4�
a5�
b5�
a6�

Carry-lookahead unit
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• Block carries are used to 
generate bit carries
– could use ripple carry of 

4-bit CLA adders
– Better:  use the CLA 

principle again! 

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C2

C3

C4

P1
G1

P2
G2

P3
G3

pi + 1
gi + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a6�
b6�
a7�
b7

a8�
b8�
a9�
b9�

a10�
b10�
a11�
b11

a12�
b12�
a13�
b13�
a14�
b14�
a15�
b15

• 4-Bit case
– Generation of g and p: 1 gate delay
– Generation of carries (and G and P): 2 gate delay
– Generation of sum: 1 more gate delay

• 16-Bit case

Delays in carry look-ahead adders
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– Generation of g and p: 1 gate delay
– Generation of block G and P: 2 more gate delay
– Generation of block carries: 2 more gate delay
– Generation of bit carries: 2 more gate delay
– Generation of sum: 1 more gate delay

• 64-Bit case
– 12 gate delays

• Can we use carry look ahead for all sizes
• Probably not due to large sizes of gate required
• What about 64 bit adders
• Use 8 bit blocks
• Eight blocks will make 64 bits

What is Realistic Delay
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• What about 32 bits?
• Compare design using 4 bit and 8 bit blocks
• Any creative thinking?



• More complicated than addition
– accomplished via shifting and addition

• More time and more area
• Let's look at 3 versions based on grade school 

algorithm

Multiplication
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01010010 (multiplicand)
x01101101 (multiplier)

• Negative numbers:  convert and multiply
• Use other better techniques like Booth’s encoding

01010010 (multiplicand)

x01101101 (multiplier)
00000000
01010010  x1
01010010
000000000  x0
001010010

0101001000  x1
0110011010

Multiplication

01010010 (multiplicand)

x01101101 (multiplier)
00000000
01010010  x1
01010010
000000000  x0
001010010
0101001000  x1

20

0110011010
01010010000  x1
10000101010
000000000000  x0
010000101010
0101001000000  x1
0111001101010

01010010000000  x1
10001011101010
000000000000000  x0
0010001011101010

0110011010
01010010000  x1
10000101010
000000000000  x0
010000101010
0101001000000  x1
0111001101010
01010010000000  x1
10001011101010
000000000000000  x0
0010001011101010

Multiplication:  Implementation

1. Test�
Multiplier0

1a. Add multiplicand to product and�
place the result in Product register

Start

Multiplier0 = 0Multiplier0 = 1

64-bit ALU

Control test

Multiplier
Shift right

Product

Multiplicand
Shift left

64 bits

32 bits
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Done

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?
No:  < 32 repetitions

Yes:  32 repetitions

Control testWrite

64 bits

Second Version

32 bits

Multiplicand

1. Test�
Multiplier0

1a. Add multiplicand to the left half of�
the product and place the result in�
the left half of the Product register

Start

Multiplier0 = 0Multiplier0 = 1
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Multiplier
Shift right

Write

64 bits

32 bits

Shift right

32-bit ALU

Product Control test

Done

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?
No:  < 32 repetitions

Yes:  32 repetitions

Final Version

32 bits

Multiplicand

1. Test�
Product0

1a. Add multiplicand to the left half of�
the product and place the result in�

Start

Product0 = 0Product0 = 1
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Control�
testWrite

64 bits

Shift rightProduct

32-bit ALU

Done

the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?
No:  < 32 repetitions

Yes:  32 repetitions

Multiplication Example

Orignal algorithmItera-
tion

multi-
plicand Step Product

0 0010 Initial values 0000 0110

0010 1:0 ⇒ no operation 0000 0110
1

0010 2: Shift right Product 0000 0011

0010 d d d 0010 00112
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0010 1a:1⇒ prod = Prod + Mcand 0010 00112

0010 2: Shift right Product 0001 0001

0010 1a:1⇒ prod = Prod + Mcand 0011 00013

0010 2: Shift right Product 0001 1000

0010 1:0 ⇒ no operation 0001 10004

0010 2: Shift right Product 0000 1100



• Let Multiplier be Q[n-1:0], multiplicand be M[n-1:0]
• Let F = 0 (shift flag)
• Let result A[n-1:0] = 0….00
• For n-1 steps do

– A[n-1:0] = A[n-1:0] + M[n-1:0] x Q[0] /* add partial product */
– F<= F .or. (M[n-1] .and. Q[0]) /* determine shift bit */

Signed Multiplication
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– Shift A and Q with F, i.e., 
– A[n-2:0] = A[n-1:1]; A[n-1]=F; Q[n-1]=A[0]; Q[n-2:0]=Q[n-1:1]

• Do the correction step
– A[n-1:0] = A[n-1:0] - M[n-1:0] x Q[0] /* subtract partial product */
– Shift A and Q while retaining A[n-1]   
– This works alwayse xcepts when both operands are 10..0 

• Numbers represented using three symbols, 1, 0, & -1
• Let us consider -1 in 8 bits

– One representation is   1 1 1 1 1 1 1 1
– Another possible one   0 0 0 0 0 0 0 -1

• Another example +14

Booth’s Encoding
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– One representation is   0 0 0 0 1 1 1 0
– Another possible one   0 0 0 1 0 0 -1 0

• We do not explicitly store the sequence
• Look for transition from previous bit to next bit 

– 0 to 0 is 0; 0 to 1 is -1; 1 to 1 is 0; and 1 to 0 is 1
• Multiplication by 1, 0, and -1 can be easily done 
• Add all partial results to get the final answer

• Convert a binary string in Booth’s encoded string
• Multiply by two bits at a time
• For n bit by n-bit multiplication, n/2 partial product
• Partial products are signed and obtained by multiplying the 

multiplicand by 0, +1, -1, +2, and -2 (all achieved by shift)
• Add partial products to obtain the final result
• Example, multiply 0111 (+7) by 1010 (-6)

Using Booth’s Encoding for Multiplication
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p , p y ( ) y ( )
• Booths encoding of 1010 is -1 +1 -1 0
• With 2-bit groupings, multiplication needs to be carried by -1 

and -2
•

1 1 1 1 0 0 1 0 (multiplication by -2)
1 1 1 0 0 1 0 0  (multiplication by -1 and shift by 2 

positions)

• Add the two partial products to get  11010110 (-42) as result

Booth’s algorithm (Neg. multiplier) 

Booth’s algorithmItera-
tion

multi-
plicand Step Product

0 0010 Initial values 0000 1101 0

0010 1c: 10⇒ prod = Prod - Mcand 1110 1101 0
1

0010 2: Shift right Product 1111 0110 1

0010 1b 01⇒ d P d + M d 0001 0110 12
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0010 1b: 01⇒ prod = Prod + Mcand 0001 0110 12

0010 2: Shift right Product 0000 1011 0

0010 1c: 10⇒ prod = Prod - Mcand 1110 1011 03

0010 2: Shift right Product 1111 0101 1

0010 1d: 11 ⇒ no operation 1111 0101 14

0010 2: Shift right Product 1111 1010 1

• Consider adding six set of numbers (4 bits each in the example)
• The numbers are 1001, 0110, 1111, 0111, 1010, 0110 (all positive)
• One way is to add them pair wise, getting three results, and then 

adding them again

1001          1111        1010        01111        100101
0110 0111 0110 10110 10000

Carry-Save Addition
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0110          0111        0110        10110          10000
01111        10110      10000      100101        110101

• Other method is add them three at a time by saving carry

1001           0111        00000          010101             001101                 
0110           1010        11110          010100             101000
1111           0110        01011          001100             110101
00000        01011      010101          001101             SUM  
11110        01100      010100          101000             CARRY

• n-bit carry-save adder take 1FA time for any n
• For n x n bit multiplication, n or n/2 (for 2 bit at time 

Booth’s encoding) partial products can be generated 
• For n partial products, need n/3 n-bit carry save adders
• This yields 2n/3 partial results

Repeat this operation until only 2 partial results remain

Carry-Save Addition for Multiplication
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• Repeat this operation until only 2 partial results remain
• Add them using a regular adder to obtain 2n bits
• For n=32, you need 30 carry save adders in eight stages 

taking 8T time where T is time for one-bit full adder
• You need one carry-propagate/carry-look-ahead adder



• Even more complicated
– can be accomplished via shifting and 

addition/subtraction
• More time and more area
• We will look at 3 versions based on grade school 

algorithm

Division
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algorithm

0011 | 0010 0010 (Dividend)

• Negative numbers:  Even more difficult
• There are better techniques, we won’t look at them

Division, First Version
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Division, Second Version
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Division, Final Version
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Restoring Division

D ivide algorithmIteration D ivisor
Step R em ainder

0010 Initial values 0000 01110
0010 Shift Rem  left 1 0000 1110
0010 2: Rem  = R em  - D iv 1110 1110

1 0010 3b: R em  < 0  ⇒  + D iv, sll R , R0 =  0 0001 1100

0010 2: Rem  = R em  - D iv 1111 11002
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0010 3b: R em  < 0  ⇒  + D iv, sll R , R0 =  0 0011 1000

0010 2: Rem  = R em  - D iv 0001 10003

0010 3a: Rem  ≥  0  ⇒  sll R , R 0 = 1 0011 0001

0010 2: Rem  = R em  - D iv 0001 00014

0010 3a: Rem  ≥  0  ⇒  sll R , R 0 = 1 0010 0011

D one 0010 shift left half of Rem  right 1 0001 0011

Non-Restoring Division
Divide algorithmIteration Divisor

Step Remainder
0 0010 Initial values 0000 1110

0010 1: Rem = Rem - Div 1110 1110

0010 2b: Rem < 0 ⇒,sll R, R0 = 0 1101 11001

0010 3b: Rem = Rem + Div 1111 1100
0010 2b: Rem < 0 ⇒ sll R, R0 = 0 1111 10002
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2b: Rem  0 ⇒ sll R, R0  0

0010 3b: Rem = Rem + Div 0001 1000

0010 2a: Rem > 0 ⇒ sll R, R0 = 1 0011 00013

0010 3a: Rem = Rem - Div 0001 0001

4 0010 2a: Rem > 0 ⇒ sll R, R0 = 1 0010 0011

Done 0010 shift left half of Rem right 1 0001 0011


