The Main Memory Unit

* CPU and memory unit interface

Address
Data

CPU Memory

* CPU issues address (and data for write)
¢ Memory returns data (or acknowledgment for write)

Memories: Design Objectives

* Provide adequate storage capacity
« Four ways to approach this goal

— Use of number of different memory devices with
different cost/performance ratios

— Automatic space-allocation methods in hierarchy
— Development of virtual-memory concept
— Design of communication links

Memories: Characteristics

e Location: Inside CPU, Outside CPU, External

« Performance: Access time, Cycle time, Transfer
rate

* Capacity: Word size, Number of words

* Unit of Transfer: Word, Block

e Access: Sequential, Direct, Random, associative
* Physical Type: Semiconductor, Magnetic, Optical

2
Memories: Basic Parameters
» Cost: c=C/S ($/bit)
* Performance:
— Read access time (Ta), access rate (1/Ta)
* Access Mode: random access, serial, semi-random
« Alterability:
— R/W, Read Only, PROM, EPROM, EEPROM
e Storage:
— Destructive read out, Dynamic, Volatility
e Hierarchy:
— Tape, Disk, DRUM, CCD, CORE, MOS, BiPOLAR
4

Exploiting Memory Hierarchy

« Users want large and fast memories!

SRAM access times are 1 - 25ns at cost of $100 to $250 per Mbyte.
DRAM access times are 60-120ns at cost of $5 to $10 per Mbyte.
Disk access times are 10 to 20 million ns at cost of $.10 to $.20 per Mbyte.

cpu

« Try and give it to them anyway I
— build a memory hierarchy Level2 Mo hecro

access time

Levels in thel) Level 2
memory hierarchy

Leveln

Size of the memory at each level

Advantage of Memory Hierarchy

* Decrease cost/bit

* Increase capacity

* Improve average access time

« Decrease frequency of accesses to slow memory

Sie Cont (S}

Fastest Senallest Highes|

Hoowest | Memory | Higgest Lowest

Memories: Review

« SRAM:
— value is stored on a pair of inverting gates
— very fast but takes up more space than DRAM
« DRAM:
— value is stored as a charge on capacitor
— very small but slower than SRAM (factor of 5/10)

Wordine |

v

capacior

Memories: Array Organization

« Storage cells are organized in a rectangular array
e The address is divided into row and column parts
e There are M (=2") rows of N bits each
* The row address (r bits) selects a full row of N bits
e The column address (c bits) selects k bits out of N
*« Mand N are generally powers of 2
« Total size of a memory chip = M*N bits
— Itis organized as A=2"*¢ addresses of k-bit words

e To design an R addresses W-bit words memory, we
need |R/A| * |W/K| chips

4Mx64-bit Memory using 1Mx4 memory chip :

Data in

o
=]
]
]
=

|
=
=]
H

M M
o] T M) B

=
M R M
o RCH MG EH

e

|

Sl EEE
il EEE

=
Sl ENEE
=l

TN
=]
=]
=]
SR
(5]

B ke u
COE SIS AR T g — % G g , T T 0 0 = 4
2423 2 - 183 12 - 3210 Data out
20 Addr
! Bank Row Addresses Column Addresses | BYt
lines Addr Addr
To all chips To all chips Toselect a
row addresses column addresses byte in 64 bit word 9
B3 B2 B1 BO

8
Locality
+ A principle that makes memory hierarchy a good idea
« |Ifanitem is referenced
— temporal locality: it will tend to be referenced again soon
— spatial locality: nearby items will tend to be referenced
soon.
* Why does code have locality?
« Ourinitial focus: two levels (upper, lower)
— block: minimum unit of data
— hit: datarequested is in the upper level
— miss: datarequested is not in the upper level
10

Memory Hierarchy and Access Time

» tiis time for access at level i
— on-chip cache, off-chip cache, main memory, disk, tape
« N accesses
— ni satisfied at level i
— ahigher level can always satisfy any access that is
satisfied by a lower level
- N=nl1+n2+n3+n4+n5
» Hit Ratio
— number of accesses satisfied/number of accesses made
— Could be confusing
— For example for level 3is it n3/N or (n1+n2+n3)/N or n3/(N-
nl-n2)
— We will take the second definition

11

Average Access Time

« tiis time for access at level i

* nisatisfied at level i

* hiis hitratio at level i
—hi=(n1+n2+..+ni)/N

« We will also assume that data are transferred from
level i+1 to level i before satisfying the request

e Total time = n1*t1 + n2*(t1+t2) + n3*(t1+t2+t3) + n4*
(t1+t2+t3+t4) + n5*(t1+t2+t3+t4+t5)

« Average time = Total time/N

o t(avr) = t1+t2*(I-h1)+t3*(1-h2)+t4*(1-h 3)+t5*(1-h4)

» Total Cost = C1*S1+C2*S2+C3*S3+C4*S4+C5*S5

12

Cache

* Two issues:
— How do we know if a data item is in the cache?
— Ifitis, how do we find it?
e Our first example:
- bloclﬁize is one word of data
— "direct'mapped"

For each item of data at the lower level,
there is exactly one location in the cache where it might be.

e.g., lots of items at the lower level share locations in the upper level

Direct Mapped Cache

e Mapping:
— address is modulo the number of blocks in the cache

000I 001X 01001 0101 10001 l0i0L 11001 11101
Memory

13

Direct Mapped Cache

+ For MIPS: s ieni Sato

ndex vaid Tag____oaa
-

g =

What kind of locality|are we taking ddvantage of?
15

Hits vs. Misses

* Read hits
— this is what we want!

* Read misses
— stall the CPU, fetch block from memory, deliver to cache,
restart

* Write hits:
— can replace data in cache and memory (write-through)
— write the data only into the cache (write-back the cache later)

* Write misses:
— read the entire block into the cache, then write the word

17

14
Direct Mapped Cache
« Taking advantage of spatial locality:
16
Hardware Issues
* Make reading multiple words easier by using banks
: >
e
¢ ltcan get anfkgxgumg“re complicated...
18

Performance

¢ Increase in block size tend to decrease miss rate:

§

Block sze (bytes) w1k

« Use split caches (more spatial locafity in code)

Block size in Instruction Data miss Effective combined
Program words miss rate rate miss rate
gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%
spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4% 19

Performance

« Simplified model:

execution time=(execution cycles + stall cycles)*cct
« stall cycles= #of instructions*miss ratio*miss penalty

* Two ways of improving performance:
— decreasing the miss ratio
— decreasing the miss penalty

What happens if we increase block size?

Decreasing miss ratio with associativity

(direct mapped)
Block Tag Data

3
Two-way set associative

et Tag Data Tag Dam

Four-way set associative
Set Tag Daia Teg Data Tag Daa Tag Daw
o
1

Eightvaysetassocitiv (uly associaive)
Tag Data Tag Data Tag Data Tag Data Teg Data Tag Daia Tag Data Tap Data
S N B A
Compared to direct mapped, give a series of references that:
— results in a lower miss ratio using a 2-way set associative cache
— results in a higher miss ratio using a 2-way set associative cache
assuming we use the “least recently used” replacement strategy

20
An implementation
© [T
|
I
23 [[]
24 [T
25 ([T
22

21
Performance
- -\\'\:
__
23

Decreasing miss penalty with multilevel caches

* Add asecond level cache:
— often primary cache is on the same chip as the processor
— use SRAMs to add another cache above primary memory (DRAM)
— miss penalty goes down if data is in 2nd level cache

« Example:
- CPIof 1.0 on a 500Mhz machine with a 5% miss rate, 200ns DRAM access
— Adding 2nd level cache with 20ns access time decreases miss rate to 2%

* Using multilevel caches:
— try and optimize the hit time on the 1st level cache
— try and optimize the miss rate on the 2nd level cache

24

Virtual Memory

.

Main memory can act as a cache for the secondary storage (disk)

Address vansiaton

Disk addresses

+ Advantages:
— illusion of having more physical memory
— program relocation
— protection

25

Pages: virtual memory blocks

Page faults: the datais not in memory, retrieve it from disk
— reducing page faults is important (LRU is worth the price)

— can handle the faults in software instead of hardware
— using write-through is too expensive so we use writeback

3130202827 15141312 111098 3210

[Vil pagerumber [o]

‘ Physcal page rumber

— huge miss penalty, thus pages should be fairly large (e.g., 4KB)

Page Tables

number
Page abe
Physial page o Prysea memory
Valld ik adess
—
Oiskstorage
< ——
~—

27

Page ot ‘
[——
I Page bl og]
[E—
53020221 roeiriiiinns 15118121000 210
‘ [EES— [e]
= @
vasa sl pag e
T
1
|
I
!
Page i
!
|
1
0
0 menpageis o
292827 covnenerneenenhon 5 2 u 008 3210
[E— [S——

Phusical address.

28

Making Address Translation Fast

A cache for address translations: translation lookaside buffer

vinua page!

-
e e
A Physical memory
- -
N
- N 4
o
frta
W e
s
= e
I |
= —
\]
7 ———

29

TLBs and Caches

Virualaddress

TLB miss:
exception

Try 0 read daal
ftom cache.

et the tag, and put
ata and o address:
o the wite buffer

Cache miss stal

Delver data
wihe Cf

30

Replacement Policies

« Replacement Policies in Multi-way Set Associative caches
— Random: Replace any line arbitrarily
— Least Recently Used (LRU): Find the least recently used line to
replace
— Keep Most Recently Used (MRU): Keep the last used line in the set
and replace any other randomly
* LRU performs the best
*« MRU does equally well

31

LRU Scheme

* We explain LRU with an example of a 4-way set associative cache

* Associate a 2-bit counter with each line (log k bit for k-way cache)

< Initially all lines are invalid

« For amiss bring anew line in an invalid line, make it valid, set its
counter to zero, increment all other counters
— Ifnoinvalid line, replace the line with counter value = 3, set its

counter to zero, increment all other counters

« For ahit, set the accessed line’'s counter to zero and increment
counters of those lines whose values is smaller than the accessed line

« Try this algorithm for an examples where lines read are 0, 64, 128, 64,
192, 256, 128, 0, 256, 192, 64...
— There are 64 lines in each cache and it is 4-way set associative

32

Reading or Writing a Memory word

* Check the address in TLB
« If not there, get the physical translation and also store the entry in TLB
— Penalty 40-50 cycles
« If page itself is not present, page fault occurs
— Read the page, update page table and TLB
— Penalty 100's of thousands cycles
« Once physical address is there If there, perform read or write in cache
« If cache miss
— Read the line in cache for read
— May need to replace a dirty or clean line
* Penalty 20-40 cycles
— For Write read the line if write allocate, else write around
« |If cache hit read or write in cache
— Also write in main memory if write through

33

A Big Example

« Instruction Frequency: LW(20%), SW(10%), R(50%), BR(15%), J(5%)
« Branch Penalty: 3 cycles on 20% mis-predictions = 15*0.20*3 = 9 cycles
« Data Cache 1: Miss rate 10% (of load/store), write back, write around,
50% dirty replacement, penalty for reading or writing a line 20 cycles
— Load penalty = 20*0.10*0.50*20 + 20*0.10*0.50%(20+20) = 60 cycles
— Store Penalty = 0 (because of write around, otherwise will be 30)
« Data Cache 2: Miss rate 5% (of load/store), write back, write allocation,
50% dirty replacement, penalty for reading or writing a line 100 cycles
— Load penalty = 20*0.05*0.5*100 + 20*0.05*0.5*(100+100) = 150 cycles
— Store Penalty = 10*0.05*0.5*100 + 10*0.05*0.5*(100+100) = 75 cycles
« TLB: Miss Rate 2% (of load/store), Miss Penalty 100 cycles
— Total Penalty = (20+10)*0.02*100 = 60 cycles
* Page faults: 0.01% (of load/store), Penalty 300,000 cycles
— Total Penalty = (20+10)*0.0001*300,000 = 900 cycles
« Total Time = 100+9+60+150+75+60+900 = 1354 cycles, or CPI=13.54
« Notice that miss rates can be spacified per instruction or per load/store

34

Misses and Replacement Policies

¢ 3C Misses
— Compulsory: Miss will have to occur on first read (or write)
— Capacity: Alineis replaced and then brought back
— Conflict: a miss occurs as some other line is occupying that line
« Example Suppose we read line afirst time (no line is in cache), then
read line b that replaces line a, and then read line a again
« Thefirst and second misses are compulsory, second miss is also
capacity and conflict, and the third miss is capacity (and also conflict)
« The terminology can be confusing here
— Thefirst read is always classified as compulsory
— The replacement and read back is conflict if there was place in
cache elsewhere but you had to bring it at that place due to
mapping
— If there was no place at all then it is capacity miss (like cache is full
in a fully associative cache)

35

Virtual Memory: Other Translation Schemes

« Inasingle-level translation

— 32 bit virtual address

— 4KB Page size (12 bit address in each page)

— Leaves 20-bit page address => 1 Million Pages =>4MB for Table
« One alternate is to only have a limited size page table with Hi and Lo

Checks

— But program use many addresses segments
« Alternate is to have atwo level page table
« Divide page addresses in two parts of 10 bits each

— There are 1K tables of 1K entries each (total is still 1M entries)

— Most significant 10 bits points to a table (with 1K entries, each 4
bytes long, a total of 4KB that fits in a page) that contains the
address of that part of table
Least significant 10 bits are used to access a particular entry in the
selected table
* We only need to keep the first table (pointing to real tables) and some

of the second level tables in memory

36

Modern Systems

« Very complicate
c

d memory systems:

Intel Pentium Pro PowerPC 604
Virtual address |32 bits 52 bits
Physical address {32 bit 32 bit
Page si; 4 KB, 4 MB 4 KB, selectable, and 256 MB

TLB organization

A TLB for instructions and a TLB for data
Both four-way set associative
Pseudo-LRU replacement
Instruction TLB: 32 entries

Data TLB: 64 entries

718 misses handled in hardware

A TLB for instructions and a TLB for data
Both two-way set associative

LRU replacement

Instruction TLB: 128 entries

Data TLB: 128 entries

TL8 misses handled in hardware

cl Intel Pentium Pro PowerPC 604
Cache plit instruction and data caches |Split intruction and data cache:
Cache size 8 KB each for 16 KB each for
Cache i Four-way set Four-way set N

LRU LRU

Block size 32 bytes 32 bytes

[write policy [Write-back |Write-back or write-through

37

Some Issues

« Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times

« Design challenge: dealing with this growing disparity

« Trends:

synchronous SRAMs (provide a burst of data)

— redesign DRAM chips to provide higher bandwidth or processing
— restructure code to increase locality

use prefetching (make cache visible to ISA)

38

