
• CPU and memory unit interface

The Main Memory Unit

Address
Data
Control

CPU Memory

1

• CPU issues address (and data for write)
• Memory returns data (or acknowledgment for write)

y

• Provide adequate storage capacity
• Four ways to approach this goal

– Use of number of different memory devices with
different cost/performance ratios

– Automatic space-allocation methods in hierarchy

Memories: Design Objectives

2

– Development of virtual-memory concept
– Design of communication links

• Location: Inside CPU, Outside CPU, External
• Performance: Access time, Cycle time, Transfer

rate
• Capacity: Word size, Number of words
• Unit of Transfer: Word, Block

Memories: Characteristics

3

• Access: Sequential, Direct, Random, associative
• Physical Type: Semiconductor, Magnetic, Optical

• Cost: c=C/S ($/bit)
• Performance:

– Read access time (Ta), access rate (1/Ta)
• Access Mode: random access, serial, semi-random
• Alterability:

Memories: Basic Parameters

4

y
– R/W, Read Only, PROM, EPROM, EEPROM

• Storage:
– Destructive read out, Dynamic, Volatility

• Hierarchy:
– Tape, Disk, DRUM, CCD, CORE, MOS, BiPOLAR

• Users want large and fast memories!

SRAM access times are 1 - 25ns at cost of $100 to $250 per Mbyte.
DRAM access times are 60-120ns at cost of $5 to $10 per Mbyte.
Disk access times are 10 to 20 million ns at cost of $.10 to $.20 per Mbyte.

Exploiting Memory Hierarchy

CPU

5

• Try and give it to them anyway
– build a memory hierarchy

Level n

Level 2

Level 1

Levels in the�
memory hierarchy

Increasing distance �
from the CPU in �

access time

Size of the memory at each level

Advantage of Memory Hierarchy

• Decrease cost/bit
• Increase capacity
• Improve average access time
• Decrease frequency of accesses to slow memory

6

• SRAM:
– value is stored on a pair of inverting gates
– very fast but takes up more space than DRAM

• DRAM:
– value is stored as a charge on capacitor

Memories: Review

7

g p
– very small but slower than SRAM (factor of 5/10)

B

A A

B

Word line

Pass transistor

Capacitor

Bit line

• Storage cells are organized in a rectangular array
• The address is divided into row and column parts
• There are M (=2r) rows of N bits each
• The row address (r bits) selects a full row of N bits
• The column address (c bits) selects k bits out of N

M d N ll f 2

Memories: Array Organization

8

• M and N are generally powers of 2
• Total size of a memory chip = M*N bits

– It is organized as A=2r+c addresses of k-bit words
• To design an R addresses W-bit words memory, we

need |R/A| * |W/k| chips

4Mx64-bit Memory using 1Mx4 memory chip :

4

15

15

15

4

14

14

14

4

13

13

13

4

12

12

12

4

11

11

11

4

10

10

10

4

9

9

9

4

8

8

8

4

7

7

7

4

6

6

6

4

5

5

5

4

4

4

4

4

3

3

3

4

2

2

2

4

1

1

1

4

0

0

0

B0

B1

B2

Data in

9

4

15

15

4

14

14

4

13

13

4

12

12

4

11

11

4

10

10

4

9

9

4

8

8

4

7

7

4

6

6

4

5

5

4

4

4

4

3

3

4

2

2

4

1

1

4

0

0

B3

20 Addr
lines

Data out24 23 22 - 13 12 - 3 2 1 0

Bank
Addr

Row Addresses Column Addresses Byte
Addr

Decoder

B3 B2 B1 B0

To select a
byte in 64 bit word

To all chips
column addresses

To all chips
row addresses

Locality

• A principle that makes memory hierarchy a good idea
• If an item is referenced

– temporal locality: it will tend to be referenced again soon
– spatial locality: nearby items will tend to be referenced

soon.
• Why does code have locality?

10

y y
• Our initial focus: two levels (upper, lower)

– block: minimum unit of data
– hit: data requested is in the upper level
– miss: data requested is not in the upper level

Memory Hierarchy and Access Time

• ti is time for access at level i
– on-chip cache, off-chip cache, main memory, disk, tape

• N accesses
– ni satisfied at level i
– a higher level can always satisfy any access that is

satisfied by a lower level

11

– N = n1 + n2 + n3 + n4 + n5
• Hit Ratio

– number of accesses satisfied/number of accesses made
– Could be confusing
– For example for level 3 is it n3/N or (n1+n2+n3)/N or n3/(N-

n1-n2)
– We will take the second definition

Average Access Time

• ti is time for access at level i
• ni satisfied at level i
• hi is hit ratio at level i

– hi = (n1 + n2 + …+ ni) /N
• We will also assume that data are transferred from

level i+1 to level i before satisfying the request

12

level i+1 to level i before satisfying the request
• Total time = n1*t1 + n2*(t1+t2) + n3*(t1+t2+t3) + n4*

(t1+t2+t3+t4) + n5*(t1+t2+t3+t4+t5)
• Average time = Total time/N
• t(avr) = t1+t2*(I-h1)+t3*(1-h2)+t4*(1-h3)+t5*(1-h4)
• Total Cost = C1*S1+C2*S2+C3*S3+C4*S4+C5*S5

• Two issues:
– How do we know if a data item is in the cache?
– If it is, how do we find it?

• Our first example:
– block size is one word of data

Cache

13

– "direct mapped"
For each item of data at the lower level,
there is exactly one location in the cache where it might be.

e.g., lots of items at the lower level share locations in the upper level

• Mapping:
– address is modulo the number of blocks in the cache

Direct Mapped Cache

00
0

Cache

00
1

01
0

01
1

10
0

10
1

11
0

11
1

14

00001 00101 01001 01101 10001 10101 11001 11101

Memory

• For MIPS:

Direct Mapped Cache

dd ess (s o g b t pos t o s)

20 10

Byte�
offset

Valid Tag DataIndex
0
1
2

Tag

Index

Hit Data

31 30 13 12 11 2 1 0

15

What kind of locality are we taking advantage of?

1021
1022
1023

20 32

• Taking advantage of spatial locality:

Direct Mapped Cache

Address (showing bit positions)

16 12 Byte�
offset

V Tag Data

Hit Data

16 bits 128 bits

2

Block offsetIndex

Tag

31 16 15 4 32 1 0

16

16 32

4K�
entries

Mux

32 32 32

32

• Read hits
– this is what we want!

• Read misses
– stall the CPU, fetch block from memory, deliver to cache,

restart

Hits vs. Misses

17

• Write hits:
– can replace data in cache and memory (write-through)
– write the data only into the cache (write-back the cache later)

• Write misses:
– read the entire block into the cache, then write the word

• Make reading multiple words easier by using banks

Hardware Issues

CPU

Cache

Bus

CPU

Bus

Multiplexor

Cache

CPU

Cache

Bus

18

• It can get a lot more complicated...

Memory

a. One-word-wide�
 memory organization�
�

b. Wide memory organization

Memory
Memory�
bank 1

Memory�
bank 2

Memory�
bank 3

Memory�
bank 0

c. Interleaved memory organization

• Increase in block size tend to decrease miss rate:

Performance

40%

35%

30%

25%

20%

15%

10%

5%

M
is

s
ra

te

19

• Use split caches (more spatial locality in code)

1 KB�
8 KB�
16 KB�
64 KB�
256 KB

256
0%

64164

Block size (bytes)

Program
Block size in

words
Instruction
miss rate

Data miss
rate

Effective combined
miss rate

gcc 1 6.1% 2.1% 5.4%
4 2.0% 1.7% 1.9%

spice 1 1.2% 1.3% 1.2%
4 0.3% 0.6% 0.4%

Performance

• Simplified model:

execution time=(execution cycles + stall cycles)∗cct
• stall cycles= #of instructions∗miss ratio*miss penalty

• Two ways of improving performance:

20

y p g p
– decreasing the miss ratio
– decreasing the miss penalty

What happens if we increase block size?

Decreasing miss ratio with associativity

Tag Data Tag Data Tag Data Tag Data

Four-way set associative

Set

Tag Data

One way set associative�
(direct mapped)

Block

0

7

1

2

3

4

5

6

Tag Data

Two-way set associative

Set

0

1

2

3

Tag Data

21

Compared to direct mapped, give a series of references that:
– results in a lower miss ratio using a 2-way set associative cache
– results in a higher miss ratio using a 2-way set associative cache

assuming we use the “least recently used” replacement strategy

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Eight-way set associative (fully associative)

g g g g

0

1

An implementation

22 8

V TagIndex
0
1
2

253
254
255

Data V Tag Data V Tag Data V Tag Data

123891011123031 0

22

3222

4-to-1 multiplexor

Hit Data

Performance

6%

9%

12%

15%

M
is

s
ra

te

23

0%

3%

Eight-wayFour-wayTwo-wayOne-way

1 KB�
2 KB�
4 KB�
8 KB

Associativity 16 KB�
32 KB�
64 KB�
128 KB

Decreasing miss penalty with multilevel caches

• Add a second level cache:
– often primary cache is on the same chip as the processor
– use SRAMs to add another cache above primary memory (DRAM)
– miss penalty goes down if data is in 2nd level cache

• Example:
– CPI of 1.0 on a 500Mhz machine with a 5% miss rate, 200ns DRAM access

24

CPI of 1.0 on a 500Mhz machine with a 5% miss rate, 200ns DRAM access
– Adding 2nd level cache with 20ns access time decreases miss rate to 2%

• Using multilevel caches:
– try and optimize the hit time on the 1st level cache
– try and optimize the miss rate on the 2nd level cache

Virtual Memory

• Main memory can act as a cache for the secondary storage (disk)

Physical addressesVirtual addresses
Address translation

25

• Advantages:
– illusion of having more physical memory
– program relocation
– protection

Disk addresses

Pages: virtual memory blocks

• Page faults: the data is not in memory, retrieve it from disk
– huge miss penalty, thus pages should be fairly large (e.g., 4KB)
– reducing page faults is important (LRU is worth the price)
– can handle the faults in software instead of hardware
– using write-through is too expensive so we use writeback

26

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

Page Tables

Physical memory

Valid

1
1
1
1
0
1

Page table

Virtual page�
number

Physical page or�
disk address

27

Disk storage

1
1
0
1
1
0
1

Page Tables

Page offsetVirtual page number

Virtual address

Physical page numberValid

Page table register

20 12

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

28

Page offsetPhysical page number

Physical address

If 0 then page is not�
present in memory

Page table

18

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Making Address Translation Fast

• A cache for address translations: translation lookaside buffer

Physical page�
addressValid

TLB

1
1
1
1
0
1

Tag
Virtual page�

number

Physical memory

29

Valid

1
1
1
1
0
1
1
0
1
1
0
1

Page table
Physical page�

or disk address

Disk storage

TLBs and Caches

Yes
TLB hit?

TLB access

Virtual address

TLB miss�
exception

No

YesNo

Physical address

30

Deliver data�
to the CPU

Write?

Try to read data�
from cache

Write data into cache,�
update the tag, and put�

the data and the address�
into the write buffer

Cache hit?Cache miss stall
YesNo

YesNo

Write access�
bit on?

�

YesNo

Write protection�
exception

• Replacement Policies in Multi-way Set Associative caches
– Random: Replace any line arbitrarily
– Least Recently Used (LRU): Find the least recently used line to

replace
– Keep Most Recently Used (MRU): Keep the last used line in the set

and replace any other randomly
• LRU performs the best

Replacement Policies

31

LRU performs the best
• MRU does equally well

• We explain LRU with an example of a 4-way set associative cache
• Associate a 2-bit counter with each line (log k bit for k-way cache)
• Initially all lines are invalid
• For a miss bring a new line in an invalid line, make it valid, set its

counter to zero, increment all other counters
– If no invalid line, replace the line with counter value = 3, set its

counter to zero increment all other counters

LRU Scheme

32

counter to zero, increment all other counters
• For a hit, set the accessed line’s counter to zero and increment

counters of those lines whose values is smaller than the accessed line
• Try this algorithm for an examples where lines read are 0, 64, 128, 64,

192, 256, 128, 0, 256, 192, 64…
– There are 64 lines in each cache and it is 4-way set associative

• Check the address in TLB
• If not there, get the physical translation and also store the entry in TLB

– Penalty 40-50 cycles
• If page itself is not present, page fault occurs

– Read the page, update page table and TLB
– Penalty 100’s of thousands cycles

• Once physical address is there If there, perform read or write in cache

Reading or Writing a Memory word

33

• If cache miss
– Read the line in cache for read
– May need to replace a dirty or clean line

• Penalty 20-40 cycles
– For Write read the line if write allocate, else write around

• If cache hit read or write in cache
– Also write in main memory if write through

• Instruction Frequency: LW(20%), SW(10%), R(50%), BR(15%), J(5%)
• Branch Penalty: 3 cycles on 20% mis-predictions = 15*0.20*3 = 9 cycles
• Data Cache 1: Miss rate 10% (of load/store), write back, write around,

50% dirty replacement, penalty for reading or writing a line 20 cycles
– Load penalty = 20*0.10*0.50*20 + 20*0.10*0.50*(20+20) = 60 cycles
– Store Penalty = 0 (because of write around, otherwise will be 30)

• Data Cache 2: Miss rate 5% (of load/store), write back, write allocation,
50% di t l t lt f di iti li 100 l

A Big Example

34

50% dirty replacement, penalty for reading or writing a line 100 cycles
– Load penalty = 20*0.05*0.5*100 + 20*0.05*0.5*(100+100) = 150 cycles
– Store Penalty = 10*0.05*0.5*100 + 10*0.05*0.5*(100+100) = 75 cycles

• TLB: Miss Rate 2% (of load/store), Miss Penalty 100 cycles
– Total Penalty = (20+10)*0.02*100 = 60 cycles

• Page faults: 0.01% (of load/store), Penalty 300,000 cycles
– Total Penalty = (20+10)*0.0001*300,000 = 900 cycles

• Total Time = 100+9+60+150+75+60+900 = 1354 cycles, or CPI=13.54
• Notice that miss rates can be spacified per instruction or per load/store

• 3 C Misses
– Compulsory: Miss will have to occur on first read (or write)
– Capacity: A line is replaced and then brought back
– Conflict: a miss occurs as some other line is occupying that line

• Example Suppose we read line a first time (no line is in cache), then
read line b that replaces line a, and then read line a again

• The first and second misses are compulsory second miss is also

Misses and Replacement Policies

35

• The first and second misses are compulsory, second miss is also
capacity and conflict, and the third miss is capacity (and also conflict)

• The terminology can be confusing here
– The first read is always classified as compulsory
– The replacement and read back is conflict if there was place in

cache elsewhere but you had to bring it at that place due to
mapping

– If there was no place at all then it is capacity miss (like cache is full
in a fully associative cache)

• In a single-level translation
– 32 bit virtual address
– 4KB Page size (12 bit address in each page)
– Leaves 20-bit page address => 1 Million Pages =>4MB for Table

• One alternate is to only have a limited size page table with Hi and Lo
Checks
– But program use many addresses segments

• Alternate is to have a two level page table

Virtual Memory: Other Translation Schemes

36

p g
• Divide page addresses in two parts of 10 bits each

– There are 1K tables of 1K entries each (total is still 1M entries)
– Most significant 10 bits points to a table (with 1K entries, each 4

bytes long, a total of 4KB that fits in a page) that contains the
address of that part of table

– Least significant 10 bits are used to access a particular entry in the
selected table

• We only need to keep the first table (pointing to real tables) and some
of the second level tables in memory

Modern Systems
• Very complicated memory systems:

Characteristic Intel Pentium Pro PowerPC 604
Virtual address 32 bits 52 bits
Physical address 32 bits 32 bits
Page size 4 KB, 4 MB 4 KB, selectable, and 256 MB
TLB organization A TLB for instructions and a TLB for data A TLB for instructions and a TLB for data

Both four-way set associative Both two-way set associative
Pseudo-LRU replacement LRU replacement
Instruction TLB: 32 entries Instruction TLB: 128 entries
Data TLB: 64 entries Data TLB: 128 entries
TLB misses handled in hardware TLB misses handled in hardware

37

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through

• Processor speeds continue to increase very fast
— much faster than either DRAM or disk access times

• Design challenge: dealing with this growing disparity

• Trends:
– synchronous SRAMs (provide a burst of data)

Some Issues

38

– redesign DRAM chips to provide higher bandwidth or processing
– restructure code to increase locality
– use prefetching (make cache visible to ISA)

