Performance?

« Performance measures, report, and summarize

+ Make intelligent choices

« See through the marketing hype

« Key to understanding underlying organizational motivation

Airplane Passengers Range (mi) Speed (mph)
Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

*How much faster is the Concorde compared to the 7477

*How much bigger is the 747 than the Douglas DC-8?

Computer Performance: TIME, TIME, TIME

* Response Time (latency)

— How long does it take for my job to run?

— How long does it take to execute a job?

— How long must | wait for the database query?
* Throughput

— How many jobs can the machine run at once?

— What is the average execution rate?

— How much work is getting done?

« If we upgrade a machine with a new processor what do we increase?
If we add a new machine to the lab what do we increase?

Execution Time and Performance

« Elapsed Time

— counts everything (disk and memory accesses, I/O, etc.)

— auseful number, but often not good for comparison purposes
« CPUtime

— doesn't count I/O or time spent running other programs

— can be broken up into system time, and user time

« Ourfocus: user CPU time
— time spent executing the lines of code that are "in" our program

« For some program running on machine X,
Performancey = 1/ Execution timey

« "Xis ntimes faster than Y*
Performancey / Performancey =n

« Problem:
— machine A runs a program in 20 seconds
— machine B runs the same program in 25 seconds

2
Clock Cycles
« Instead of reporting execution time in seconds, we often use cycles
seconds cycles M seconds
program program cycle
« Clock “ticks” indicate when to start activities (one abstraction):
| il Il |] |] Il
T T T T T T T T
time
+ cycle time =time between ticks = seconds per cycle
« clock rate (frequency) = cycles per second (1 Hz. =1 cycle/sec)
A 200 Mhz. clock hasa 7 — &~ x10° = 5 nanoseconds cycle time
200 x10
« Different instructions take different clock time
— Multiplication takes longer than add
— Floating point takes longer than integer
— Memory access takes longer than arithmetic or logic 4

Now that we understand cycles

+ Agiven program will require
— some number of instructions (machine instructions)
— some number of cycles
— some number of seconds
+ We have a vocabulary that relates these quantities:
— cycle time (seconds per cycle)
— clock rate (cycles per second)
— CPI (cycles per instruction)
afloating point intensive application might have a higher CPI
— MIPS (millions of instructions per second)

this would be higher for a program using simple instructions

Performance

« Performance is determined by execution time
« Do any of the other variables equal performance?
— #of cycles to execute program?
— #of instructions in program?
— #of cycles per second?
— average # of cycles per instruction?
— average # of instructions per second?

« Common pitfall: thinking one of the variables is indicative of
performance when it really isn’t.

CPI Example

+ Suppose we have two implementations of the same instruction set
architecture (ISA).

For some program,

Machine A has a clock cycle time of 10 ns. and a CPI of 2.0
Machine B has a clock cycle time of 20 ns. and a CPI of 1.2

What machine is faster for this program, and by how much?

« If two machines have the same ISA which of our quantities (e.g., clock rate,
CPI, execution time, # of instructions, MIPS) will always be identical?

of Instructions Example

« A compiler designer is trying to decide between two code sequences
for a particular machine. Based on the hardware implementation,
there are three different classes of instructions: Class A, Class B,
and Class C, and they require one, two, and three cycles
(respectively).

The first code sequence has 5 instructions: 2 of A, 1 of B, and 2 of C
The second sequence has 6 instructions: 4 of A, 1 of B, and 1 of C.

Which sequence will be faster? How much?
What is the CPI for each sequence?

MIPS example

+ Two different compilers are being tested for a 100 MHz. machine with
three different classes of instructions: Class A, Class B, and Class
C, which require one, two, and three cycles (respectively). Both
compilers are used to produce code for a large piece of software.

The first compiler's code uses 5 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructions.

The second compiler's code uses 10 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructions.

* Which sequence will be faster according to MIPS?
* Which sequence will be faster according to execution time?

Amdabhl's Law

Execution Time After Improvement =
Execution Time Unaffected +(Execution Time Affected / Amount of Improvement)
* Example:

*"'Suppose a program runs in 100 seconds on a machine, with
multiply responsible for 80 seconds of this time. How much do we have to
improve the speed of multiplication if we want the program to run 4 times
faster?"

How about making it 5 times faster?

* Principle: Make the common case fast

11

8
Benchmarks
« Performance best determined by running a real application
— Use programs typical of expected workload
— Or, typical of expected class of applications
e.g., compilers/editors, scientific applications, graphics, etc.
* Small benchmarks
— nice for architects and designers
— easy to standardize
— can be abused
* SPEC (System Performance Evaluation Cooperative)
— companies have agreed on a set of real program and inputs
— can still be abused (Intel’'s “other” bug)
— valuable indicator of performance (and compiler technology)
« Spec 95 programs
« Spec 2000 programs
10
Remember
« Performance is specific to a particular program/s
— Total execution time is a consistent summary of performance
« For agiven architecture performance increases come from:
— increases in clock rate (without adverse CPI affects)
— improvements in processor organization that lower CPI
— compiler enhancements that lower CPI and/or instruction count
« Pitfall: expecting improvement in one aspect of a machine’s
performance to affect the total performance
* You should not always believe everything you read! Read carefully!
(see newspaper articles, e.g., Exercise 2.37)
12

