Combinational Circuits \& Sequential Circuits

Two main classes of circuits:

1. Combinational circuits

- Circuits without memory
- Outputs depend only on current input values

2. Sequential Circuits (also called Finite State Machine)

- Circuits with memory
- Memory elements to store the state of the circuit
- The state represents the input sequence in the past
- Outputs depend on both circuit state and current inputs

Latches, Flip-Flops and Registers

- These are devices to store information.
- Latches and Flip-Flops - single bit
- Registers - multiple bits
- Basic structure for storing a bit:
- a pair of cross-coupled inverters
- maintain a binary state indefinitely
- Not useful as it lacks some practica means for changing its state
- Usually constructed by two cross-coupled NOR (or NAND) gates to provide some control signals.

SR Latch (Basic Latch)

Gated D Latch (or called D Latch)

- We do not want R and S both to be 1
- But both can be (and should be) zero to store a value
- So we can force a zero when we want them to be zero together
- But only one of them will be 1 at a time
- These facts can be used to make a gated D latch
- G acts as a control signal
- G = 0 means no writing, $\mathbf{G}=1$ allows writing
- The value written is that of input D

Gated SR Latch

- Adding an enable control input G (sometimes called CLK)

- Equivalent circuit using NAND (less transistors):

Master-Slave D Flip-Flop (D Flip-Flop)

- D Latch manages timing based on levels of signals (called a Level Sensitive circuit)
- We like to define a precise point in time when data gets stored (called a Edge-Triggered circuit)
- Data is written in flip-flop when an edge of clock signal C arrived
- This can be achieved by connecting two gated latches as below
- When C is low, first latch gates data on D, second does nothing
- When C goes high, second latch latches what is Q of first latch

- When clock C is low,
- the first D latch samples the D input
- the second D latch does not record any new value
- When C changes from low to high (i.e., at the up-going edge of C),
- the first D latch store the D input value just before the edge
- the second D latch copies the value in the first D latch into itself

T Flip-Flop

- Remain the same when $T=0$
- Toggle the state when $\mathrm{T}=1$

JK Flip-Flop

- Combines the behaviors of SR and T Flip-Flops
- It behaves as the SR flip-flop where $J=S$ and $K=R$ (except $J=K=1$)
- If $J=K=1$, it toggles its state like the T flip-flop

Delays in SR Latches

Timing Consideration

- Circuit timing is a very important consideration in the design of any electronic systems
- So far, we have ignore any timing problems
- We will consider the following timing issues:

For Flip-flops:

- Set-up time
- Hold time
- Propagation delay

For Combinational circuits:

- Contamination delay
- Propagation delay

For Sequential circuits:

- Combining the timing of FFs and combinational circuits

Operation of D Flip-flops (Edge-triggered FFs)

- When clock C is low,
- the first D latch samples the D input
- the second D latch does not record any new value
- When C changes from low to high (i.e., at the up-going edge of C),
- the first D latch store the D input value just before the edge
- the second D latch copies the value in the first D latch into itself

Timing Issues in D Flip-flops

- Set-up time:
- Changes in input D propagate through many gates to the AND gates of the second D latch
- Therefore D should be stable (i.e., set up) for at least five gate delays before the clock changes from low to high
- Hold time:
- When clock changes from low to high, the first latch may still sample for one gate delay time.
- Therefore, D should remain stable (i.e., hold) for at least one gate delay even after clock changes
- Propagation delay:
- After clock changes from low to high, the value fetched by the second latch takes three gate delays to propagate to the output Q

Set-up Time, Hold Time, Propagation Delay of FFs

C

A Complicated Example

- Suppose a combinational circuit with several inputs and several outputs is constructed using several components
- The contamination delay $\left(\mathrm{t}_{\mathrm{cd}}\right)$ and propagation delay $\left(\mathrm{t}_{\mathrm{pd}}\right)$ of each component are given
- There are various paths from input to output in the circuit
- We need to find the shortest path for contamination delay
- We need to find the longest path for propagation delay
- For the circuit given below
- Contamination delay =
- Propagation delay =

Making a shift-register

- Flip-flops can also be connected to act as a shift register
- All clock signals are connected together to one clock
- First flip flop gets a new input
- Others get input from previous flip-flop
- A 4-bit shift register is shown

Parallel-Access Register

- We can add some logic to registers to create different device behaviors
- So far, the registers we have designed cannot hold a specific data value for more than one clock pulse
- A parallel-access register (also called register with parallel load) can hold a specific data value for more than one clock cycle
- A load signal LD is added

- Please refer to textbook Sec. 7.8.2 for parallel-access shift register

Implementation of Parallel-Access Register

Register File

- Register file is a unit containing r registers
- r can be $4,8,16,32$, etc.
- Each register has n bits
_ n can be $4,8,16,32$, etc.
- n defines the data path width
- Output ports (DATA1 and DATA2) are used for reading the register file
- Any register can be read from any of the ports
- Each port needs a $\log _{2} r$ bits to specify the read address (RA1 and RA2)
- Input port (LD_DATA) is used for writing data to the register file
- Write address is also specified by $\log _{2} r$ bits (WA)
- Writing is enabled by WR signal

Register file design

- We will design an eight-register file with 4-bit wide registers
- A single 4-bit register and its abstraction are shown below

.
- We have to use eight such registers to make an eight register file

- How many bits are required to specify a register address?

Adding write control to register file

- To write any register, we need register address (WA) and a write register signal (WR)
- A 3-bit write address is decoded if write register signal is present
- One of the eight registers gets a LD signal from decoder

