
1/12/2008

1

Variables in C
What is a variable?

Each variable is just a block of memory
Block of memory that equates to a certain value
Actual value is determined by the programmer

Integer, Byte, A few bits, etc.
Example:

1

Example:
ASCII character ‘A’

numeric value 65 In hex = 0x41
Depending on the debugger, it may appear as ‘A’, 65, or 0x41
Array Example
The string “CprE281x” is represented in memory as

‘C’ ‘ P’ ‘R’ ‘E’ ‘2’ ’8’ ‘1’ `x’ ‘\0’
Memory contains

0x43 0x50 0x52 0x45 0x32 0x38 0x31 0x58 0x00

Variables in C
The notation of a variable is just a way of representing a
specific quantity. The programmer interprets how the
information is represented and decide how the value is used
Passed in the value 50 in an 8 bit quantity

Binary = 0011 0010
H 0 32

2

Hex = 0x32
Decimal = 50

Could be the actual number 50
x = x + 50

Could be various bits of information
If bit 6 is set, do something

Could be a combination
If bit 6 is set, x = x + lower nibble of the value

Variables in C
Variable declaration: compiler knows two things –
the name and type of the variable

int k – reserves 32 bits of memory to hold integer value
of k
k is called an object or “a named region of storage”

3

k is called an object or a named region of storage
In variable assignment the compiler places the
value in the memory location of the object

k = 2 –> places 2 (a 32 bit value) at memory location k
The two values associated with k are

rvalue – the right value, 2
lvalue – the left value, address of k or the object `k’
The lvalue cannot be used on the right side of an
equation, i.e. 2=k is not acceptable

Variables in C
What if we want a variable that has the ability to
store an lvalue (a memory address)?

Called a pointer variable
The pointer size is the width of the memory address
Size can vary based on the system – for most

t th dd idth i 4 b t

4

computers the address width is 4 bytes
i.e. sizeof(type *) = 4 bytes

A pointer is declared using the “*” symbol
We must also tell the compiler what type of variable we
want it to point to
int *myBaseAddr tells the compiler myBaseAddr points
to an integer, a 32 bit quantity
Note on naming and syntax

Do not use char* myBaseAddr, char *pMyBaseAddr or
myBaseAddrPtr when declaring a pointer

Variables in C
myBaseAddr is the name of the pointer
and it contains an address (lvalue), thus

It generally does not make sense to say
myBaseAddr = 510 or myBaseAddr = myInt

5

This works but does assigning an rvalue to an lvalue
really make sense? The second case usually gives a
warning

We should write myBaseAddr = 0x0000 0005
or myBaseAddr = &myInt

The statements assign an address to myBaseAddr
The & symbol is used to access the lvalue of the
variable myInt – the andress of myInt
Now myBaseAddr points to the address of myInt

Variables in C
So how do we access the value stored at the
address pointed to by myBaseAddr?

Use the * symbol again – called the dereferencing
*myBaseAddr = 5010 assigns 50 the address pointed to
b B dd

6

by myBaseAddr
How many bytes of memory used to store this value?
What should be the value of myInt now?
What is the lvalue of myBaseAddr?
The rvalue?
What happens if we increment myBaseAddr by 1 as in
myBaseAddr++?
What does the statement (*myBaseAddr)++ do?

1/12/2008

2

Arrays
What is an array?

Sequence of a specific variable type stored in memory
Not a specific type
Pointer to a block of memory

7

Define an array as
type variableName[arraySize];
Declares “arraySize” elements of type “type” denoted
by “variableName”

Zero-indexed (starts at zero rather than one)
Last element is found at arraySize-1

Variables in C
Strings
What is a string?

Special array of type char that is ended by the NULL
(\0) character

Remember to create an array of N+1 characters

8

Remember to create an array of N+1 characters
to allow space for the NULL character
20 character string
char szString[21]; /* 20 + 1 */

Why is there a NULL character?
Otherwise, how can you identify actual chars in a

string?

Variables in C
int nMyIntArray[30];

nMyIntArray[0] /* The first element of the array */
…
nMyIntArray[29] /* The last element of the array */

nMyIntArray[30] /* INVALID! Beyond the edge of the array */

9

Example

int nTestArray1[20]; /* An array of 20 integers */
int nTestArray2[20]; /* An array of 20 integers */

nTestArray1[0] = nTestArray2[0]; /* This works */

nTestArray1 = nTestArray2; /* This does not work */

Variables in C
Be careful of boundaries in C
No guard to prevent you from
accessing beyond array edge

Write beyond array = Potential for

10

disaster

What exactly is an array?
Not a specific type

Pointer to a block of memory

No built-in mechanism for copying
arrays

Accessing Arrays - pointers
As a pointer point to the address of another
variable the same is true for arrays, for example

myBaseAddr = &myIntArray[0] sets the pointer
myBaseAddr to the address of myIntArray[0]
Wh d * B dd d I [0] h i

11

What do *myBaseAddr and myIntArray[0] have in
common
What does *(myBaseAddr + 1) represent in array?
What about *(++myBaseAddr)?
Difference between the previous two statements?

Can also write myBaseAddr = myIntArray
I.E. the name of the array is actually the address of
the first element of the array

Arrays and Pointers
Be careful when using pointers and arrays
interchangeably – what is wrong with the
following code
char myCharArray[20] = “this is my string”;

12

int *myArrayBaseAddr;

myArrayBaseAddr = myCharArray;
While(*myArrayBaseAddr != 0)
{

printf(“%c”, *myArrayBaseAddr);
myArrayBaseAddr++;

}

1/12/2008

3

Pointers
Points to a spot in memory

Pointer size is dependent upon addressability of system, not
type of variable that is being pointed to
Most microprocessors and like MPC555 – 32-bit memory

addressable
char * 32-bit memory address

13

long * 32-bit memory address
float * 32-bit memory address

sizeof function
Returns the size in bytes of a variable

Figuring out sizes of a variable on a system (e.g., int)
Calculating the size of a block of memory

Examples
sizeof(char) = 1
sizeof(char *) = 4
sizeof(long *) = 4

Pointers
int nVal;
int *pnVal;
pnVal = &nVal; /* let address be 0x20000000 */
nVal = 10;

14

pnVal is 0x20000000
*pnVal is 10

*pnVal = 5;
pnVal is still 0x20000000
*pnVal is 5
nVal is 5

Draw a memory diagram

Pointers
Three key steps when using pointers:

1. Declare the pointer
type * pName;

char * pChar;
long * pHistory;

2 Initialize the pointer

15

2. Initialize the pointer
In order to use the pointer, we need to point it somewhere.

pChar = (char *) 0x00001800;
pHistory = &lValue;

The (char *) tells the compiler this is a 32-bit memory address, not a 32-
bit value.
3. Access the pointer (Read/Write)

In order to get the value, we must use a * in front of the name.
n = *pChar & 0x80;
if(*pHistory + 25 > TOL_HISTORY)

*pHistory = TOL_MINIMUM;

Pointers
What does the pointer point to?

Depends upon the system, may not always be RAM
Two types of architecture

Unified Memory - Motorola
All devices, RAM, etc. share the same address space
0x2000 may be memory, a temperature sensor, hard disk

16

m y m m y, mp ,
Split I/O – Intel

Separate addresses for I/O and memory
Hard disk, PCI cards – I/O address space, special assembly

instructions to access
A device can choose to respond however it wants to read and write

Thus, a write with bit 7 set may behave differently than a write
with bit 7 clear

Need to understand the device’s programming model or
interface

Pointers
Embedded Programming Example
Given:

Temperature 0x2500 float
AC 0x2520 byte

If temp>80 then turn on AC by setting bit 0 to true

17

float * pfTemp;
char * pAC;

pfTemp = (float *) 0x2500;
pAC = (char *) 0x2520;

if (*pfTemp > 80)
*pAC = *pAC | 0x01;

Memory Diagram Example
Assume the following C code
int myInt;
char myArray[10] = “CPRE281x”;
char *myCharAddress;
int *myIntAddress;

18

myCharAddress = myArray;
myIntAddress = &myInt;
myInt = 200;
What is *myIntAddress?
What is *myCharAddress?
What is *myCharAddress++?

What is myCharAddress now?
What is *(myCharAddress++)?

What is *myIntAddress++?

1/12/2008

4

Operations in C
Arithmetic operators: + - * / % ()
Shift: the shift operation may be done via an
arithmetic shift or by a logical shift

Arithmetic MSB stays the same on a right shift

19

Arithmetic – MSB stays the same on a right shift
Logical – Always shift in a zero

0x0F >> 2 = 0x03;
0x0F << 2 = 0x3C;
0x9F >> 1 =

Operator Precedence
~ ! - (unary) ++ --
* / % arithmetic
+ -
<< >> bit shift
< <=> >= relational

20

 relational
== !=
& bitwise logical
^
|
&& Boolean
||

Functions
Goal – Calculate some value or do some task
Subroutines – May/may not return a value
Syntax
ReturnType FunctionName
(Type Parameter1Name, Type Parameter2Name, …)

21

yp yp
{

return (expression of ReturnType);
}
main function is the startup point for all C programs
main ()
{ }

Functions
Return Types

void No Return Value

May return any variable type but an array
Note: Don’t return a pointer to a local variable (more later)

22

p ()

Examples
return (0);
return (nVal);
return 1;
return; /* void function */

return keyword immediately exits the function

Functions
Parameters

May have zero or more parameters
Typically, standard practice is to keep the number of

parameters below 5 to 8
Any type, even an array

23

void PassArray (char szString[])
For an array, may or may not declare size
If the size is not declared, make sure to either know the size

ahead of time or to pass the size in as a parameter
Arrays are passed in as pointers
All parameters are local variables, i.e. altering the local
variable does not affect the actual caller unless the variable
is a pointer

Functions
Prototyping

How does C look up a function?
C top-down compilation
Compiler only knows about what it has seen so far

i.e at line 20, knows contents of lines 1-20
Problem: Write the function definition at the bottom call

24

Problem: Write the function definition at the bottom, call
it at the top

Solution 1: Move the function definition earlier
Solution 2: Write a prototype

Prototype – Tells the compiler the function is defined
somewhere in the code

If the function is prototyped but not defined, linker error

1/12/2008

5

Functions
Prototype
Declaration or header line of function, up to first curly brace,

plus semicolon
No semicolon = compiler expects function body (i.e., code)
Semicolon = prototype

Declaration

25

Declaration
void WritePrototype (char szString[], short nStringLen)

{}
Prototype
void WritePrototype (char szString[], short nStringLen);
Call

Syntax: FunctionName (parameter1, parameter2, etc.);
if(x > 5)

WritePrototype(szName,20);

Functions
Passing Variables
Can pass via one of two ways:

1. Pass to be read only (Write – No effect)
2. Pass allowing changes (Write – Changes actual variables)

26

Pass by value (“call by value”), i.e. no changes
void DoValue (int, float, char);
…
DoValue (5, 2.5, ‘A’);
DoValue (nTest, fPressure, byInput);

Value – A local variable on the stack

Functions
Pass by pointer (“call by reference”)

i.e., allow changes
void DoChanges (int *, float *, char[]);
…
DoChanges(5, 2.5,”test”);/* Can’t do this,

27

g
need a variable to use */

DoChanges(&nTest,&fPressure,szName);

In order to allow changes to the variable, must pass as a pointer

Memory Address – Access to actual variable itself

Functions
How does this happen?
Parameters are set up as local variables

Created on the stack
Visible only to the function
Enter the function: Space is created

28

f p
Exit the function: Space is destroyed

Not really destroyed, just changed to garbage
status

Why is returning a pointer to a local variable bad?
Return a value – OK – actual value and mechanisms are set up for
that
Return an address – Address to memory that may/may not be
garbage

Functions
Global vs. Local
Global variable

Declared outside of all functions
May be initialized upon program startup
Visible and usable everywhere from .c file

29

What happens when local/global have the same name?
Local takes precedence

Summary
Local – declared inside of a function, visible only to

function
Global – declared outside all functions, visible to all

functions

Functions
What happens when you want a local variable to stick around but
do not want to use a global variable?

Create a static variable
Syntax:

30

static Type Name;

Static variables are initialized once
Think of static variables as a “local” global
Sticks around (has persistence) but only the function can access

it

1/12/2008

6

Control-Flow in C
Flow Control – Making the program behave in a particular
manner depending on the input given to the program.

Why do we need flow control?
Not all program parts are executed all of the time, i.e., we
want the program to intelligently choose what to do.

St t t f B l fl t l

31

Statements for Boolean flow control
if, else if, else

The evaluation for Boolean flow control is done on a TRUE /
FALSE basis. TRUE / FALSE in the context of a computer is
defined as non-zero (TRUE) or zero (FALSE).

-1, 5, 15, 225, 325.33 TRUE
0 FALSE

Flow Control/Control FLow in C
if, else if, else
Must always have “if”; may/may not have “else if” or “else”
Syntax
if (Condition1)
{ …
}

32

else if (Condition2)
{ …
}
else if (Condition3)
{ …
}
else
{ …
}

Flow Control/Control Flow in C
Follows a level hierarchy

else if statements are only evaluated if all previous if and
else if conditions have failed for the block
else statements are only executed if all previous
conditions have failed

33

Why is how if statements are evaluated important?
Helps in the design of efficient logic
Know if a condition is evaluated, all previous conditions up
to that point have failed
For example, in the above syntax example, the else if
(Condition2) will only be executed if Condition1 is false.

Flow Control/Control Flow in C
Example

if (nVal > 10)
{

nVal += 5;
}

34

}

else if (nVal > 5) /* If we reach
this point, */

{ /* nVal must be <= 10 */
nVal -= 3;

}

else /* If we reach
this point, */

{ /* nVal must be <= 10 and */
nVal = 0; /* nVal must be <= 5 */

}

Flow Control/Control Flow in C
Comparison (Relational Operators) – Numeric
> (greater), >= (geq), < (less), <= (leq), ==
(Equal), != (Not Equal)
Comparison gives a result of zero (FALSE) or !zero (TRUE).

A TRUE result may not necessarily be a 1
Equality Double equals sign ==

= Assigns a value
Tests for equality returns non zero or zero

35

== Tests for equality, returns non-zero or zero
if (nVal = = 5) versus if (nVal = 5)

The second expression always evaluates to TRUE.
Why?

Multiple condition tie together using Boolean (logical)
operators, && (AND), || (OR), ! (NOT)

if ((nVal > 0) && (nArea < 10))
if((nVal < 3) | | (nVal > 50))
if (! (nVal <= 10))

Conditions are evaluated using lazy evaluation.
Lazy evaluation – Once a condition is found that completes the
condition, stop

OR any condition is found to be TRUE 1 OR anything = 1
AND any condition is found to be FALSE 0 AND anything = 0

Flow Control/Control Flow in C

36

y y g

Why is lazy evaluation important?
Makes code run faster – skips unnecessary code

Know condition will/will not evaluate, why evaluate other
terms

Can use lazy evaluation to guard against unwanted conditions
Checking for a NULL pointer before using the pointer

