
Three Representations of Logic Functions

1. Logic Expression X.Y                 X+Y                X’    X

2. Truth Table X Y X.Y
0 0 0
0 1 0
1 0 0

AND OR NOT

~X    !X
X Y X+Y
0 0 0
0 1 1

1 0 1

X X'
0 1
1 0

1

3. Circuit Diagram
/ Schematic

1 0 0
1 1 1

1 0 1
1 1 1

1 0

X Y F0 F1 F2 F3 F4 F5 F6 F7
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

X Y F8 F9 F10 F11 F12 F13 F14 F15
0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1

Logic Functions of 2 Variables
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1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

• F1 is called a logical AND, denoted by X.Y
• F6 is called an XOR (Exclusive-OR), denoted by X ⊕ Y  
• F7 is called OR, denoted by X + Y
• F8 is NOR, denoted by X + Y 
• F9 is called an XNOR (Exclusive-NOR), denoted by X ⊕ Y
• F14 is NAND, denoted by X.Y

Truth Tables for 2 Variable Functions

X Y AND  X Y OR  X Y XOR
0 0 0  0 0 0  0 0 0 
0 1 0  0 1 1  0 1 1 
1 0 0  1 0 1  1 0 1 
1 1 1  1 1 1  1 1 0 
           

X Y NAND X Y NOR X Y XNOR
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X Y NAND  X Y NOR  X Y XNOR
0 0 1  0 0 1  0 0 1 
0 1 1  0 1 0  0 1 0 
1 0 1  1 0 0  1 0 0 
1 1 0  1 1 0  1 1 1 

 

Which Truth Tables Are the Same?

1) 2)B A F
0 0 0
0 1 0
1 0 1
1 1 0

A B F
0 0 0
0 1 0
1 0 1
1 1 0

4

3) B A F
1 1 0
1 0 1
0 1 0
0 0 0

• NAND denoted by X.Y

• NOR denoted by X + Y

Logic Gate Symbols

• AND denoted by X.Y

• OR denoted by X + Y
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• XNOR denoted by X ⊕ Y• XOR denoted by X ⊕ Y

• NOT denoted by X’ or X

Half and Full Adder Truth Tables 

C B A S

0 0 0 0

1) 2)B A S
0 0 0
0 1 1
1 0 1
1 1 0

A B C
0 0 0
0 1 0
1 0 0
1 1 1

C B A C

0 0 0 0
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0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1



• Three inputs X, Y, and Z; Output is F
• Logic Function: 

F = 1 if and only if there is a 0 to the left of a 1 in the input
• Truth Table:

Truth Table with Three Inputs

X Y Z F Min term 
0 0 0 0  
0 0 1 1  
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• Logic Expression:
F=

0 0
0 1 0 1  
0 1 1 1  
1 0 0 0  
1 0 1 1  
1 1 0 0  
1 1 1 0  

 

 

• Four inputs X, Y, Z, and W; Output is F
• Logic Function: 

F = 1 if and only if number of variables 
with value 1 is more than the number of 
variables with value 0

• Truth Table:

Truth Table with Four Inputs

XYZW F 
0000 0 
0001 0 
0010 0 
0011 0 
0100 0 
0101 0 
0110 0

8

• Logic Expression:
F=

0110 0
0111 1 
1000 0 
1001 0 
1010 0 
1011 1 
1100 0 
1101 1 
1110 1 
1111 1 

 

 

The Idea of Min Term / Product Term

X Y F A B

0 0 1 1 0

0 1 0 0 0

1 0 0 0 0

1 1 1 0 1

X Y Min Term 
0 0 X' Y' 
0 1 X' Y  
1 0 X  Y' 
1 1 X  Y 

 

 

9

• Each row in a truth table represents a unique combination of 
variables

• Each row can be expressed as a logic combination specifying 
when that row combination is equal to a 1

• The term is called a MIN TERM or a PRODUCT TERM
• Thus F = A + B = X’Y’ + XY

• Two inputs X and Y; Output is F
• Logic Function: 

F = 1 if and only if X = Y
• Truth Table:

Truth Table with Two Inputs

X Y F Min Term
0 0 1 X’Y’
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• Logic Expression:
F=X’Y’.1 + X’Y.0 + XY’.0 + XY.1 
=X’Y’ + XY

0 1 0 X’Y
1 0 0 XY’
1 1 1 XY

Min / Product terms for more variables

XYZ Min Term 

000 X' Y' Z' 
001 X' Y' Z 
010 X' Y  Z' 
011 X' Y  Z  
100 X  Y' Z' 

XYZW Min Term 

0000 X' Y' Z' W' 
0001 X' Y' Z' W 
0010 X' Y' Z  W' 
0011 X' Y' Z  W 
0100 X' Y  Z' W' 
0101 X' Y  Z' W 
0110 X' Y Z W'
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101 X  Y' Z 
110 X  Y  Z' 
111 X  Y  Z 

 

 

0110 X' Y  Z  W'
0111 X' Y  Z  W 
1000 X  Y' Z' W' 
1001 X  Y' Z' W 
1010 X  Y' Z  W' 
1011 X  Y' Z  W 
1100 X  Y  Z' W' 
1101 X  Y  Z' W 
1110 X  Y  Z  W' 
1111 X  Y  Z  W 

 

 

Multiplexer Circuit

More compact truth-table representation 

0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0

sx1x2 f (s, x1, x2) 0 
1 

f (s, x1, x2)s
x1

x2

f = s’ x + s x
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Truth Table f 

s 

x 1 
x 2 

0 
1 

Graphical symbolCircuit 

1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 

f 

x 1

x 2
s 

f = s’.x1 + s.x2



• A product (min) term is a unique combination of variables:
– It has a value of 1 for only one input combination
– It is 0 for all the other combinations of variables

• To write an expression, we need not write the entire truth table
• We only need those combinations for which function output is 1
• For example, for the function below:     f = x’yz’+xy’z’+xyz

Canonical Sum-of-Product Expression

f Mi t
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• This is called the Canonical Sum-of-Product (SOP) Expression

x y z f Min term 
0 0 0 0  
0 0 1 0  
0 1 0 1 x’yz’ 
0 1 1 0  
1 0 0 1 xy’z’ 
1 0 1 0  
1 1 0 0  
1 1 1 1 xyz 

 

 

Shorthand Notation for Canonical SOP

• We can also assign an integer to represent each input 
combination

• Thus the function produces a 1 for input combinations 2, 4, 7
• Therefore, the function can be written as f(x,y,z)= )7,4,2(∑m

x y z f 
Index for 

shorthand 
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notation 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 1 2 
0 1 1 0 3 
1 0 0 1 4 
1 0 1 0 5 
1 1 0 0 6 
1 1 1 1 7 

 

 

• A max (sum) term is also a unique combination of variables
– However, it is opposite of a min term
– It has a value of 0 for only one input combination
– It is 1 for all the other combinations of variables
– That is why it is called a max (sum) term
– Each row in truth table has a max term corresponding to it

• Example a max term (x+y+z) is 0 for combination xyz=000 only

Max / Sum Terms
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• Example, a max term (x+y+z) is 0 for combination xyz=000 only

X Y Max Term 
0 0 X + Y 
0 1 X + Y’  
1 0 X’ + Y 
1 1 X’ + Y’ 

 

 

• A function can also be written in terms of max terms
• The function is product of all max terms for which function is 0
• For example, the same function of three variable x, y, and z 

produces 0 for xyz=000, 011, 101, then 
– F = (x+y+z).(x+y’+z’).(x’+y+z’)

• This is called the Canonical Product-of-Sum (POS) Expression
• The function can also be written as F(x y z)=

Canonical Product-of-Sum Expression

∏ )530(M
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The function can also be written as F(x,y,z)=∏ )5,3,0(M
X Y Z F F’
0 0 0 0 1 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 1 0 
1 1 1 1 0 
 

F = (F’)’
= (x’y’z’ + x’yz + xy’z)’
= (x+y+z).(x+y’+z’).(x’+y+z’)

Truth Tables and Logic Expression for Adder

A B C X    Y 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0

∑= )7,4,2,1(),,( mCBAX

∑= )7,6,5,3(),,( mCBAY
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1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

 

 

X = A’B’C + A’BC’ + AB’C’ + ABC

Y = A’BC + AB’C + ABC’ + ABC

∏= )(),,( MCBAX

∏= )(),,( MCBAY

• Canonical Sum-of-Product form
• Canonical Product-of-sum form
• How to convert one from other?
• Minterm expansion of X to minterm expansion of X’ 

– Just take the terms that are missing

Multiple Forms and Equivalence

∑= )7421()( mCBAX ∑= )()(' mCBAX

18

• Maxterm expansion of X to maxterm expansion of X’
– Just take the terms that are missing

∑= )7,4,2,1(),,( mCBAX ∑= )(),,( mCBAX

∏= )(),,( MCBAX ∏= )(),,(' MCBAX



Boolean Algebra

• An algebraic structure consists of
– a set of elements {0, 1}
– binary operators {+, .}
– and a unary operator { ’ }

• Introduced by George Boole in 1854
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• An effective means of describing circuits 
built with switches

• A powerful tool that can be used for 
designing and analyzing logic circuits

George Boole
1815-1864

Axioms of Boolean Algebra

• 1a:  0.0 = 0
1b:  1+1 = 1

• 2a:  1.1 = 1
2b:  0+0 = 0

• 3a: 0 1 = 1 0 = 0
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• 3a:  0.1 = 1.0 = 0
3b:  1+0 = 0+1 = 1

• 4a:  If x=0, then x’ = 1
4b:  If x=1, then x’ = 0 

Single-Variable Theorems

• 5a:  x.0 = 0 Null
5b:  x+1 = 1

• 6a:  x.1 = x Identity
6b:  x+0 = x

• 7a: x x = x Idempotency
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• 7a:  x.x = x Idempotency
7b:  x+x = x

• 8a:  x.x’ = 0 Complementarity
8b:  x+x’ = 1

• 9:    (x’)’ = x Involution

Two- and Three-Variable Properties

• 10a:  x.y = y.x Commutative
10b:  x+y = y+x

• 11a:  x.(y.z) = (x.y).z Associative
11b:  x+(y+z) = (x+y)+z

• 12a: x (y+z) = x y + x z Distributive
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12a:  x.(y+z)  x.y + x.z Distributive
12b:  x+y.z = (x+y).(x+z)

• 13a:  x+x.y = x Absorption
13b:  x.(x+y) = x

Other Properties

• Combining 
14a:  x.y+x.y’ = x
14b:  (x+y).(x+y’) = x

• DeMorgan’s Theorem 
15a:  (x.y)’ = x’+y’
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( y) y
15b:  (x+y)’ = x’.y’

• Another form of Absorption 
16a:  x+x’.y = x+y
16b:  x.(x’+y) = x.y

• F =X’YZ+X’YZ’+XZ
=X’Y(Z+Z’)+XZ by Distributive
=X’Y(1)+XZ by Complementarity
=X’Y+XZ by Identity

Simplify Logic Function by Algebraic Manipulation

X Y Z F 
0 0 0 0 
0 0 1 0 
0 1 0 1 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0X
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1 1 0 0
1 1 1 1 

 

 

X

Y
Z

X
Y

Z

F=X’YZ+X’YZ’+XZ

F=X’Y+XZ



• Dual:
– A dual of a Boolean expression is derived by replacing . by +,  

+ by ., 0 by 1, and 1 by 0 and leaving variables unchanged
– In general duality:       fD(x1,x2,…,xn,0,1,+,.) =       

f(x1,x2,…,xn,1,0,.,+)
• Principle of Duality: 

– If any theorem can be proven, the dual theorem can also be 
proven

Principle of Duality
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proven.
– A meta-theorem (a theorem about theorems)

• Examples:
– Multiplication and factoring:

• (x+y).(x’+z) = x.z+x’.y and
x.y+x’.z=(x+z).(x’+y)

– Consensus:
• (x.y)+(y.z)+(x’.z)=x.y+x’z  and

DeMorgan’s Theorem in Terms of Logic Gates

x 1 
x 2 

x 1 

x 2 

x 1 
x 2 

x 1 x 2 x 1 x 2 + = (a) 
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x 1 
x 2 

x 1 

x 2 

x 1 
x 2 

x 1 x 2 + x 1 x 2 = (b) 

Using NAND to Implement SOP

x 1 
x 2 

x 3 
x 4 
x 5 

x 1 
x 2 

x 3 
x 4 
x 5 
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x 1 
x 2 

x 3 
x 4 
x 5 

Using NOR to Implement POS

x 1 
x 2 

x 3 
x 4 
x 5 

x 1 
x 2 

x 3 
x 4 
x 5 
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x 1 
x 2 

x 3 
x 4 
x 5 

Order of Precedence of Logic Operators

• From highest precedence to lowest:  NOT, AND, OR
• We can use parenthesis to change the order

• Examples:  
f = X’+X.Y is the same as

f = ((X’)+(X.Y))
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f = X.(Y+Z) is NOT the same as
f = X.Y+Z

A Typical CAD (Computer-Aided Design) System

Design conception 

Truth table 

Hardware
Description
Language

Schematic
capture 

DESIGN ENTRY

Functional 
simulation 
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Simple 
synthesis Translation 

Merge 

Boolean equations INITIAL SYNTHESIS TOOLS 

Design correct? 

Logic synthesis, 
physical design, 
timing simulation 

No
Yes 



• Karnaugh map (K-map) allows viewing the function in a picture 
form

• Containing the same information as a truth table
• But terms are arranged such that two neighbors differ in only 

one variable
• It is easy to identify which terms can be combined
• Example:

A ith 3 i bl

Karnaugh map

A B C F
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A map with 3 variables

1 1
1 0

1 0
1 10

1

00 01 11 10
AB
C

A B C F
0 0 0 1 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 

 

 

Location of Min-terms in K-maps

x 1 x 2 x 3 00 01 11 10

0 

1 

x 2 x 3 

0 0 

0 1 

1 0 

1 1 

m 0 

m 1 

m 3 

m 2 

0 

0 

0 

0 

x 1 

m 0 

m 1 m 3 

m 2 m 6 

m 7 

m 4 

m 5 
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(b) Karnaugh map
0 0 

0 1 

1 0 

1 1 

1 

1 

1 

1 

m 4 

m 5 

m 7 

m 6 

(a) Truth table 

m2 + m6 = x1’ x2 x3’ + x1 x2 x3’
= x2 x3’

1 1
1 0

1 0
1 1

Simplification using K-map

• Groups of ‘1’s of size 1x1, 2x1, 1x2, 2x2, 4x1, 1x4, 4x2, 2x4, or 
4x4 are called prime implicants (p.159 in textbook).

• A ‘1’ in the K-map can be used by more than one group1 1
1 0

1 0
1 10

1

00  01  11  10
AB

C
AB

C
0
1

00  01  11  10
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1 1 1 0A 1  in the K map can be used by more than one group
• Some rule-of-thumb in selecting groups:

– Try to use as few group as possible to cover all 
‘1’s.

– For each group, try to make it as large as you can 
(i.e., if you can use a 2x2, don’t use a 2x1 even if 
that is enough).

1 1 1 01 1

Examples of 3-Variable K-map

f x1x3 x2x3+=

x1x2x3

0 0

1 0

1 1

0 1

00 01 11 10

0

1
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x1x2x3

1 1

0 0

1 1

0 1 f x3 x1x2+=

00 01 11 10

0

1

• Example: 1, 2, 3, and 4 variables maps are 
shown below

Karnaugh maps with up to 4 variables

0
1

A
0
1 1 0

1 1
1 0
1 1

0 1
0 1

1 0
1 0

00 01 11 10
00
01
11
10

AB
CD

1 0
1 1

1 0
1 10

1

00 01 11 10
AB
C

1 0
0 1

0   1
0
1

A
B
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• What if a function has 5 variables?

0 1 1 010

K-map Example for Adder functions

A B C S Cout
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 

∑= )7,4,2,1(),,( mCBAS

∑= )7,6,5,3(),,( mCBACout

AB AB
CoutS
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1 0 0 1 0
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

 

 

S = A’B’C + A’BC’ + AB’C’ + ABC

Cout = BC + AC + AB

1 0
0 1

1 0
0 10

1

00 01 11 10
AB
C

0 1
0 0

1 1
1 00

1

00 01 11 10
AB
C



• Don’t care condition is input combination that will never occur.
• So the corresponding output can either be 0 or 1.
• This can be used to help simplifying logic functions.
• Example: F(A,B,C,D)=Σ m(1,3,7,11,15)+ Σ D(0,2,5)

K-map with Don’t Care Conditions

d 1 1 d
00   01   11   10

00

CD
AB

d 1 1 d
00   01   11   10

00

CD
AB

37

F = CD+A’B’

0 d 1 0

0 0

0 0

1 0

1 0

01

11

10

0 d 1 0

0 0

0 0

1 0

1 0

01

11

10

F = CD+A’D

d: Don’t Care Condition

Examples

• Simplify the following function considering:
– the sum-of-products form        -- the product-of-sums form

1 1

1 0

1 d

0 1

00    01    11    10

00

01

CD
AB

1 1

1 0

1 d

0 1

00    01    11    10

00

01

CD
AB
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1 1 1 d

0 0

0 d

0 1

1 1

01

11

10

1 1 1 d

0 0

0 d

0 1

1 1

01

11

10

• Design a 1-bit circuit with proper “glue logic” to use it for n-bits
– It is called a bit slice
– The basic idea of bit slicing is to design a 1-bit circuit and 

then piece together n of these to get an n-bit component

• Example:
A h lf dd dd t 1 bit i t

1-bit building blocks to make n-bit circuit
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• A half-adder adds two 1-bit inputs
• Two half adders can be used to add 3 bits
• A 3-bit adder is a full adder
• A full adder can be a bit slice 

to construct an n-bit adder

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

B

C S

A

Half Adder

• Two half adders can be used to add 3 bits
• n-bit adder can be built by full adders
• n can be arbitrary large

Full adder & multi-bit ripple-carry adder

BA

BC BA
Cout2A2

B2 Full

Cout3
Sum3

A3
B3
C3

Full
Adder

Half Adder

4-bit ripple-carry adder
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B

C S

A

C S C S

Cout
Sum

Cout
Sum

A
B
C

Full
Adder

Cout0
Sum0

A0
B0
Ci

Full
Adder

Cout1
Sum1

A1
B1
C1

Full
Adder

Sum2
B2
C2 Adder

• Design a unit that can do more than one function
• In that case, we can design a function unit for each operation like 

ADD, SUB, AND, OR, ....
• And then select the desired output
• For example, if we want to be able to perform ADD and SUB on 

two given operands A and B, and select any one 
• Then the following set up will work

Multiple Function Unit Design
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• Then the following set up will work

ADD
A

B

SUB
A

B

MUX

Select

Result

• Separate ADD and SUB units are expensive
• We can simplify the design
• A - B is the same as adding negation of B to A
• How to negate?

– 2’s complement (i.e., take 1’s complement and add 1)
– Adding 1 is also expensive

ADD/SUB unit design
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– It needs an n-bit adder in general
– However, we only need to add two bits in each stage

• In the first stage, we need to add 1’s complement of LSB and 1
• In other stages, we need to add carry output of previous bit to 1’s 

complement of current bit
• We select B or negation of B depending on the requirement
• We add A to the selected input to obtain the result 



• Multiplexers are circuits which select one of many inputs
• In here, we assume that we have one-bit inputs

(in general, each input may have more than one bit)

• Suppose we have eight inputs: I0, I1, I2, I3, I4, I5, I6, I7
• We want one of them to be output based on selection signals
• 3 bits of selection signals to decide which input goes to output

Note the order of selection signals

Multiplexing and Multiplexer
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• Note the order of selection signals
– X is MSB and Z is LSB X Y  Z F 

0  0  0 I0 
0  0  1 I1 
0  1  0 I2 
0  1  1 I3 
1  0  0 I4 
1  0  1 I5 
1  1  0 I6 
1  1  1 I7 

 

 

S2
S1
S0 F

0  1  2  3  4  5  6  7

I0  I1  I2  I3  I4  I5  I6  I7

X
Y
Z

8-to-1 Multiplexer

• We can write a logic expression for output F as follows
F = X’ Y’ Z’ I0 + X’ Y’ Z I1 + X’ Y Z’ I2 + X’ Y Z I3 

+ X  Y’ Z’ I4 + X  Y’ Z I5 + X  Y Z’ I6 + X  Y Z I7 
• This circuit can be implemented using

– eight 4-input AND gates and one 8-input OR gates

Multiplexer Implementation
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S2
S1
S0 F

0  1  2  3  4  5  6  7

I0  I1  I2  I3  I4  I5  I6  I7

X
Y
Z

X Y  Z F
0  0  0 I0 
0  0  1 I1 
0  1  0 I2 
0  1  1 I3 
1  0  0 I4 
1  0  1 I5 
1  1  0 I6 
1  1  1 I7 

 

 

Implementing 4-to-1 MUX using 2-to-1 MUXs

S0 2x1 MUX
0      1

I0       I1

S0 S0 2x1 MUX
0      1

I2       I3

S0
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S0 2x1 MUX
0      1

S1

Making a 2-bit 4-to-1 Multiplexer

A B C D
• Four 2-bit inputs A, B, C, D
• One 2-bit output F
• Two bits of selection signal X Y

X Y F 
0 0 A 
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X
Y F

0  1  2  3  
4-1

MUXS1
S0

X
Y F

0  1  2  3  
4-1

MUXS1
S0

X
Y

F

0 1 B
1 0 C 
1 1 D 

 

• Multiplexers can be directly used to implement a function
• Easiest way is to use function inputs as selection signals
• Input to multiplexer is a set of 1s and 0s depending on the 

function to be implemented
• We use a 8-to-1 multiplexer to implement function F
• Three select signals are X, Y, and Z, and output is F
• Eight inputs to multiplexer are 1 0 1 0 1 1 0 0

Synthesis of Logic Functions using Multiplexers

X Y  Z F
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Eight inputs to multiplexer are 1  0  1  0  1  1  0  0
• Depending on the input signals

– multiplexer will select proper output

0  0  0 1
0  0  1 0
0  1  0 1
0  1  1 0
1  0  0 1
1  0  1 1
1  1  0 0
1  1  1 0

S2
S1
S0 F

0  1  2  3  4  5  6  7X
Y
Z

1 0 1 0 1 1 0 0

Implementing 3-variable functions with 4x1 MUX

• Divide the outputs into 4 groups based on X and Y.
• Write the outputs as a function of Z
• There are only 4 possibilities: F=Z, F=Z’, F=0, F=1

Z Z’ 0 1
X Y  Z F 
0  0  0 0 
0 0 1 1 F=Z
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S1
S0

F

0      1      2      3
X
Y

0  0  1 1
0  1  0 1 
0  1  1 0 
1  0  0 0 
1  0  1 0 
1  1  0 1 
1  1  1 1  

 

 

F=Z'

F=0

F=1

4x1 MUX



Implementing 4-variable functions with 8x1 MUX

 A  B  C  D F 
 0   0  0   0 0 
 0   0  0   1 1 
 0   0  1   0 0 
 0   0  1   1 1 
 0   1  0   0 1 
 0   1  0   1 0 
0 1 1 0 0

F=D

F=D

F=D’
S2 0 1 2 3 4 5 6 7A

D D D’0 0 D 1 1
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 0   1  1   0 0 
 0   1  1   1 0 
 1   0  0   0 0 
 1   0  0   1 0 
 1   0  1   0 0 
 1   0  1   1 1 
 1   1  0   0 1 
 1   1  0   1 1 
 1   1  1   0 1 
 1   1  1   1 1 

 

 

F=0

F=0

F=D

F=1

F=1

S1
S0

0  1  2  3  4  5  6  7A
B
C

F

8x1 MUX

Implementing 4-variable functions with 4x1 MUX

 A  B  C  D F 
 0   0  0   0 0 
 0   0  0   1 1 
 0   0  1   0 0 
 0   0  1   1 1 
 0   1  0   0 1 
 0   1  0   1 0 
0 1 1 0 0

F=D

F=C’D’ D 1

DC DC
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0   1  1   0 0
 0   1  1   1 0 
 1   0  0   0 0 
 1   0  0   1 0 
 1   0  1   0 0 
 1   0  1   1 1 
 1   1  0   0 1 
 1   1  0   1 1 
 1   1  1   0 1 
 1   1  1   1 1 

 

 

F=CD

F=1

S1
S0

F

0      1      2      3
A
B

D 1

4x1 MUX

Implementing 4-variable functions with 4x1 MUX

 A  B  C  D F 
 0   0  0   0 0 
 0   0  0   1 0 
 0   0  1   0 0 
 0   0  1   1 0 
 0   1  0   0 0 
 0   1  0   1 0 
0 1 1 0 0

F=

F=
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 0   1  1   0 0 
 0   1  1   1 1 
 1   0  0   0 0 
 1   0  0   1 0 
 1   0  1   0 1 
 1   0  1   1 1 
 1   1  0   0 0 
 1   1  0   1 1 
 1   1  1   0 1 
 1   1  1   1 1 

 

 

F=

F=

S1
S0

F

0      1      2      3
A
B 4x1 MUX

Definition of Decoder

• Suppose we have n input bits (which can represent up to 2n

distinct elements of coded information). 
• We need a device that allows us to select which of the 2n

elements, devices, memory locations, etc. is being selected.  
• In general:

– A decoder has n input bits
– A decoder has 2n (or less) output bits
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A decoder has 2 (or less) output bits
– As a rule, all but one of the outputs is zero (deselected) at 

any time (called one-hot encoded)

• The 2-to-4 decoder is a block which decodes the 2-bit binary 
inputs and produces four outputs

• One output corresponding to the input combination is a one
• Two inputs and four outputs are shown in the figure
• The equations are 

– y0 = x1’. x0’
– y1 = x1’. x0

2-to-4 Decoder

2-to-4 
x1 y0

y1
2
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y
– y2 = x1 . x0’
– y3 = x1 . x0

• The truth table:

decoderx0 y2
y3

x1 x0 y3 y2 y1 y0
0 0 0 0 0 1

0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

Definition of Encoder

• Encoders perform the inverse function of Decoders.  
• An encoder has 2n (or less) input bits and n output bits
• The output bits generate the binary code corresponding to the 

input value
• Assuming only one input has a value of 1 at any given time
• Example: An 8-to-3 Encoder

Inputs Outputs
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p p

A2=D4+D5+D6+D7
A1=D2+D3+D6+D7
A0=D1+D3+D5+D7

D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1



What are the outputs of the following circuits?

2-to-4 
decoder

x1

x0

y0
y1
y2
y3

4-to-2 
encoder

a1

a0
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4-to-2 
encoder

x1

x0

y0
y1
y2
y3

2-to-4 
decoder

b0
b1
b2
b3

Priority Encoders

• Each input signal has a priority level associated with it
• May have more than one 1’s in the input signals
• Outputs indicate the active input that has the highest priority
• Example: 4-to-2 priority encoder

– Assume w3 has the highest priority and w0 the lowest
– y1 y0 indicate the active input with highest priority
– z indicates none of the inputs is equal to 1
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w3 w2 w1 w0 y1 y0 z
0 0 0 0 d d 0
0 0 0 1 0 0 1
0 0 1 x 0 1 1
0 1 x x 1 0 1
1 x x x 1 1 1

Let i0 = w0 w1’ w2’ w3’
i1 = w1 w2’ w3’
i2 = w2 w3’
i3 = w3

Then y0 = i1 + i3
y1 = i2 + i3

x: both 0 and 1 (irrelevant)

• A 2-to-4 decoder can be designed with an enable signal
• If enable is zero, all outputs are zero
• If enable is 1, then an output corresponding to two inputs is a 

one, all others are still zero
• The equations are 

– y0 = x1’. x0’. E

Decoder with Enable

E
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y
– y1 = x1’. x0 . E
– y2 = x1 . x0’. E
– y3 = x1 . x0 . E 2-4 decoder

x1

x0

y0
y1
y2
y3

Truth Table for 2-to-4 Decoder with Enable

x1 x0 E y3 y2 y1 y0

0 0 0 0 0 0 0

0 0 1 0 0 0 1

0 1 0 0 0 0 0

0 1 1 0 0 1 0
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1 0 0 0 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 0 0

1 1 1 1 0 0 0

Demultiplexers

• Perform the opposite function of multiplexers
• Placing the value of a single data input onto one of the multiple 

data outputs
• Same implementation as decoder with enable
• Enable input of decoder serves as the data input for the 

demultiplexer
D
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2-4 DEMUX
x1

x0

y0
y1
y2
y3

D

• The 3-to-8 decoder can be implemented using two 2-to-4 
decoders with enable and one NOT gate

• The implementation is as shown

3-to-8 decoder using a 2-to-4 decoder with Enable

y0
y1

x2
x1

E
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2-4 decoder
y
y2
y3

2-4 decoder

y4
y5
y6
y7

x0
E



Verilog HDL

Popular Hardware Description Languages (HDLs):
• Verilog HDL

– More popular with US companies
– Similar to C / Pascal programming language in syntax

• VHDL
– More popular with European companies

Si il t Ad i l i t
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– Similar to Ada programming language in syntax
– More “verbose” than Verilog

Uses of Verilog:
• Synthesis
• Simulation
• Verification

Verilog Syntax

• Module / Signal names:
– Start with a letter
– Follow by any sequence of letter, number, _ and $
– Case sensitive

• Comment by // or /* */
• White spaces (SPACE, TAB, blank line) are ignored.
// An example
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// An example
module example1 (x1, x2, x3, f);

input x1, x2, x3;
output f;

and (g, x1, x2);
not (k, x2);
and (h, k, x3);
or (f, g, h);

endmodule

// An example
module example1 (x1, x2, x3
, f);input x1, x2, x3;output
f;and (g, x1, x2); not (k, x2
);and (h, k, x3); or (f, g, 
h);endmodule

Structural Specification of Logic Circuit

f

x1x2

module example1 (x1, x2, x3, f);
input x1, x2, x3;
output f;

and (g, x1, x2);
not (k x2);

g

k
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x3

not (k, x2);
and (h, k, x3);
or (f, g, h);

endmodule

h

g 

x 3 
x 1 

x 2 x 4 

module example2 (x1, x2, x3, x4, f, g, h);
input x1, x2, x3, x4;
output f, g, h;

and (z1, x1, x3);
and (z2, x2, x4);
or (g, z1, z2);

Another Example of Structural Specification
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h 

f or (z3, x1, ~x3);
or (z4, ~x2, x4);
and (h, z3, z4);
or (f, g, h);

endmodule

Behavioral Specification Continuous Assignment

f

x3

x1x2

// Structural Specification

g

k
h

// Behavioral Specification
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// Structural Specification
module example1 (x1, x2, x3, f);

input x1, x2, x3;
output f;

and (g, x1, x2);
not (k, x2);
and (h, k, x3);
or (f, g, h);

endmodule

// Behavioral Specification
module example3 (x1, x2, x3, f);

input x1, x2, x3;
output f ;

assign f = (x1 & x2) | (~x2 & x3);

endmodule

Concurrent statement

Behavioral Specification
Procedural (Sequential) Statement

module example5 (x1, x2, x3, f);
input x1, x2, x3;
output f ;
reg f ;

f

x3

x1x2

k
h

Declared as variable (register) if assigned 
l i d l
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reg f ;

always @(x1 or x2 or x3)
if (x2 == 1)

f = x1;
else

f = x3;

endmodule

always block

Sensitivity list

a value in a procedural statement


