
Three Representations of Logic Functions

1. Logic Expression X.Y X+Y X’ X

2. Truth Table X Y X.Y
0 0 0
0 1 0
1 0 0

AND OR NOT

~X !X
X Y X+Y
0 0 0
0 1 1

1 0 1

X X'
0 1
1 0

1

3. Circuit Diagram
/ Schematic

1 0 0
1 1 1

1 0 1
1 1 1

1 0

X Y F0 F1 F2 F3 F4 F5 F6 F7
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

X Y F8 F9 F10 F11 F12 F13 F14 F15
0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1

Logic Functions of 2 Variables

2

1 0 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1

• F1 is called a logical AND, denoted by X.Y
• F6 is called an XOR (Exclusive-OR), denoted by X ⊕ Y
• F7 is called OR, denoted by X + Y
• F8 is NOR, denoted by X + Y
• F9 is called an XNOR (Exclusive-NOR), denoted by X ⊕ Y
• F14 is NAND, denoted by X.Y

Truth Tables for 2 Variable Functions

X Y AND X Y OR X Y XOR
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

X Y NAND X Y NOR X Y XNOR

3

X Y NAND X Y NOR X Y XNOR
0 0 1 0 0 1 0 0 1
0 1 1 0 1 0 0 1 0
1 0 1 1 0 0 1 0 0
1 1 0 1 1 0 1 1 1

Which Truth Tables Are the Same?

1) 2)B A F
0 0 0
0 1 0
1 0 1
1 1 0

A B F
0 0 0
0 1 0
1 0 1
1 1 0

4

3) B A F
1 1 0
1 0 1
0 1 0
0 0 0

• NAND denoted by X.Y

• NOR denoted by X + Y

Logic Gate Symbols

• AND denoted by X.Y

• OR denoted by X + Y

5

• XNOR denoted by X ⊕ Y• XOR denoted by X ⊕ Y

• NOT denoted by X’ or X

Half and Full Adder Truth Tables

C B A S

0 0 0 0

1) 2)B A S
0 0 0
0 1 1
1 0 1
1 1 0

A B C
0 0 0
0 1 0
1 0 0
1 1 1

C B A C

0 0 0 0

6

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

• Three inputs X, Y, and Z; Output is F
• Logic Function:

F = 1 if and only if there is a 0 to the left of a 1 in the input
• Truth Table:

Truth Table with Three Inputs

X Y Z F Min term
0 0 0 0
0 0 1 1

7

• Logic Expression:
F=

0 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

• Four inputs X, Y, Z, and W; Output is F
• Logic Function:

F = 1 if and only if number of variables
with value 1 is more than the number of
variables with value 0

• Truth Table:

Truth Table with Four Inputs

XYZW F
0000 0
0001 0
0010 0
0011 0
0100 0
0101 0
0110 0

8

• Logic Expression:
F=

0110 0
0111 1
1000 0
1001 0
1010 0
1011 1
1100 0
1101 1
1110 1
1111 1

The Idea of Min Term / Product Term

X Y F A B

0 0 1 1 0

0 1 0 0 0

1 0 0 0 0

1 1 1 0 1

X Y Min Term
0 0 X' Y'
0 1 X' Y
1 0 X Y'
1 1 X Y

9

• Each row in a truth table represents a unique combination of
variables

• Each row can be expressed as a logic combination specifying
when that row combination is equal to a 1

• The term is called a MIN TERM or a PRODUCT TERM
• Thus F = A + B = X’Y’ + XY

• Two inputs X and Y; Output is F
• Logic Function:

F = 1 if and only if X = Y
• Truth Table:

Truth Table with Two Inputs

X Y F Min Term
0 0 1 X’Y’

10

• Logic Expression:
F=X’Y’.1 + X’Y.0 + XY’.0 + XY.1
=X’Y’ + XY

0 1 0 X’Y
1 0 0 XY’
1 1 1 XY

Min / Product terms for more variables

XYZ Min Term

000 X' Y' Z'
001 X' Y' Z
010 X' Y Z'
011 X' Y Z
100 X Y' Z'

XYZW Min Term

0000 X' Y' Z' W'
0001 X' Y' Z' W
0010 X' Y' Z W'
0011 X' Y' Z W
0100 X' Y Z' W'
0101 X' Y Z' W
0110 X' Y Z W'

11

101 X Y' Z
110 X Y Z'
111 X Y Z

0110 X' Y Z W'
0111 X' Y Z W
1000 X Y' Z' W'
1001 X Y' Z' W
1010 X Y' Z W'
1011 X Y' Z W
1100 X Y Z' W'
1101 X Y Z' W
1110 X Y Z W'
1111 X Y Z W

Multiplexer Circuit

More compact truth-table representation

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0

sx1x2 f (s, x1, x2) 0
1

f (s, x1, x2)s
x1

x2

f = s’ x + s x

12

Truth Table f

s

x 1
x 2

0
1

Graphical symbolCircuit

1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

f

x 1

x 2
s

f = s’.x1 + s.x2

• A product (min) term is a unique combination of variables:
– It has a value of 1 for only one input combination
– It is 0 for all the other combinations of variables

• To write an expression, we need not write the entire truth table
• We only need those combinations for which function output is 1
• For example, for the function below: f = x’yz’+xy’z’+xyz

Canonical Sum-of-Product Expression

f Mi t

13
• This is called the Canonical Sum-of-Product (SOP) Expression

x y z f Min term
0 0 0 0
0 0 1 0
0 1 0 1 x’yz’
0 1 1 0
1 0 0 1 xy’z’
1 0 1 0
1 1 0 0
1 1 1 1 xyz

Shorthand Notation for Canonical SOP

• We can also assign an integer to represent each input
combination

• Thus the function produces a 1 for input combinations 2, 4, 7
• Therefore, the function can be written as f(x,y,z)=)7,4,2(∑m

x y z f
Index for

shorthand

14

notation
0 0 0 0 0
0 0 1 0 1
0 1 0 1 2
0 1 1 0 3
1 0 0 1 4
1 0 1 0 5
1 1 0 0 6
1 1 1 1 7

• A max (sum) term is also a unique combination of variables
– However, it is opposite of a min term
– It has a value of 0 for only one input combination
– It is 1 for all the other combinations of variables
– That is why it is called a max (sum) term
– Each row in truth table has a max term corresponding to it

• Example a max term (x+y+z) is 0 for combination xyz=000 only

Max / Sum Terms

15

• Example, a max term (x+y+z) is 0 for combination xyz=000 only

X Y Max Term
0 0 X + Y
0 1 X + Y’
1 0 X’ + Y
1 1 X’ + Y’

• A function can also be written in terms of max terms
• The function is product of all max terms for which function is 0
• For example, the same function of three variable x, y, and z

produces 0 for xyz=000, 011, 101, then
– F = (x+y+z).(x+y’+z’).(x’+y+z’)

• This is called the Canonical Product-of-Sum (POS) Expression
• The function can also be written as F(x y z)=

Canonical Product-of-Sum Expression

∏)530(M

16

The function can also be written as F(x,y,z)=∏)5,3,0(M
X Y Z F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 1 0
1 1 1 1 0

F = (F’)’
= (x’y’z’ + x’yz + xy’z)’
= (x+y+z).(x+y’+z’).(x’+y+z’)

Truth Tables and Logic Expression for Adder

A B C X Y
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0

∑=)7,4,2,1(),,(mCBAX

∑=)7,6,5,3(),,(mCBAY

17

1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

X = A’B’C + A’BC’ + AB’C’ + ABC

Y = A’BC + AB’C + ABC’ + ABC

∏=)(),,(MCBAX

∏=)(),,(MCBAY

• Canonical Sum-of-Product form
• Canonical Product-of-sum form
• How to convert one from other?
• Minterm expansion of X to minterm expansion of X’

– Just take the terms that are missing

Multiple Forms and Equivalence

∑=)7421()(mCBAX ∑=)()(' mCBAX

18

• Maxterm expansion of X to maxterm expansion of X’
– Just take the terms that are missing

∑=)7,4,2,1(),,(mCBAX ∑=)(),,(mCBAX

∏=)(),,(MCBAX ∏=)(),,(' MCBAX

Boolean Algebra

• An algebraic structure consists of
– a set of elements {0, 1}
– binary operators {+, .}
– and a unary operator { ’ }

• Introduced by George Boole in 1854

19

• An effective means of describing circuits
built with switches

• A powerful tool that can be used for
designing and analyzing logic circuits

George Boole
1815-1864

Axioms of Boolean Algebra

• 1a: 0.0 = 0
1b: 1+1 = 1

• 2a: 1.1 = 1
2b: 0+0 = 0

• 3a: 0 1 = 1 0 = 0

20

• 3a: 0.1 = 1.0 = 0
3b: 1+0 = 0+1 = 1

• 4a: If x=0, then x’ = 1
4b: If x=1, then x’ = 0

Single-Variable Theorems

• 5a: x.0 = 0 Null
5b: x+1 = 1

• 6a: x.1 = x Identity
6b: x+0 = x

• 7a: x x = x Idempotency

21

• 7a: x.x = x Idempotency
7b: x+x = x

• 8a: x.x’ = 0 Complementarity
8b: x+x’ = 1

• 9: (x’)’ = x Involution

Two- and Three-Variable Properties

• 10a: x.y = y.x Commutative
10b: x+y = y+x

• 11a: x.(y.z) = (x.y).z Associative
11b: x+(y+z) = (x+y)+z

• 12a: x (y+z) = x y + x z Distributive

22

12a: x.(y+z) x.y + x.z Distributive
12b: x+y.z = (x+y).(x+z)

• 13a: x+x.y = x Absorption
13b: x.(x+y) = x

Other Properties

• Combining
14a: x.y+x.y’ = x
14b: (x+y).(x+y’) = x

• DeMorgan’s Theorem
15a: (x.y)’ = x’+y’

23

(y) y
15b: (x+y)’ = x’.y’

• Another form of Absorption
16a: x+x’.y = x+y
16b: x.(x’+y) = x.y

• F =X’YZ+X’YZ’+XZ
=X’Y(Z+Z’)+XZ by Distributive
=X’Y(1)+XZ by Complementarity
=X’Y+XZ by Identity

Simplify Logic Function by Algebraic Manipulation

X Y Z F
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0X

24

1 1 0 0
1 1 1 1

X

Y
Z

X
Y

Z

F=X’YZ+X’YZ’+XZ

F=X’Y+XZ

• Dual:
– A dual of a Boolean expression is derived by replacing . by +,

+ by ., 0 by 1, and 1 by 0 and leaving variables unchanged
– In general duality: fD(x1,x2,…,xn,0,1,+,.) =

f(x1,x2,…,xn,1,0,.,+)
• Principle of Duality:

– If any theorem can be proven, the dual theorem can also be
proven

Principle of Duality

25

proven.
– A meta-theorem (a theorem about theorems)

• Examples:
– Multiplication and factoring:

• (x+y).(x’+z) = x.z+x’.y and
x.y+x’.z=(x+z).(x’+y)

– Consensus:
• (x.y)+(y.z)+(x’.z)=x.y+x’z and

DeMorgan’s Theorem in Terms of Logic Gates

x 1
x 2

x 1

x 2

x 1
x 2

x 1 x 2 x 1 x 2 + = (a)

26

x 1
x 2

x 1

x 2

x 1
x 2

x 1 x 2 + x 1 x 2 = (b)

Using NAND to Implement SOP

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

27

x 1
x 2

x 3
x 4
x 5

Using NOR to Implement POS

x 1
x 2

x 3
x 4
x 5

x 1
x 2

x 3
x 4
x 5

28

x 1
x 2

x 3
x 4
x 5

Order of Precedence of Logic Operators

• From highest precedence to lowest: NOT, AND, OR
• We can use parenthesis to change the order

• Examples:
f = X’+X.Y is the same as

f = ((X’)+(X.Y))

29

f = X.(Y+Z) is NOT the same as
f = X.Y+Z

A Typical CAD (Computer-Aided Design) System

Design conception

Truth table

Hardware
Description
Language

Schematic
capture

DESIGN ENTRY

Functional
simulation

30

Simple
synthesis Translation

Merge

Boolean equations INITIAL SYNTHESIS TOOLS

Design correct?

Logic synthesis,
physical design,
timing simulation

No
Yes

• Karnaugh map (K-map) allows viewing the function in a picture
form

• Containing the same information as a truth table
• But terms are arranged such that two neighbors differ in only

one variable
• It is easy to identify which terms can be combined
• Example:

A ith 3 i bl

Karnaugh map

A B C F

31

A map with 3 variables

1 1
1 0

1 0
1 10

1

00 01 11 10
AB
C

A B C F
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Location of Min-terms in K-maps

x 1 x 2 x 3 00 01 11 10

0

1

x 2 x 3

0 0

0 1

1 0

1 1

m 0

m 1

m 3

m 2

0

0

0

0

x 1

m 0

m 1 m 3

m 2 m 6

m 7

m 4

m 5

32

(b) Karnaugh map
0 0

0 1

1 0

1 1

1

1

1

1

m 4

m 5

m 7

m 6

(a) Truth table

m2 + m6 = x1’ x2 x3’ + x1 x2 x3’
= x2 x3’

1 1
1 0

1 0
1 1

Simplification using K-map

• Groups of ‘1’s of size 1x1, 2x1, 1x2, 2x2, 4x1, 1x4, 4x2, 2x4, or
4x4 are called prime implicants (p.159 in textbook).

• A ‘1’ in the K-map can be used by more than one group1 1
1 0

1 0
1 10

1

00 01 11 10
AB

C
AB

C
0
1

00 01 11 10

33

1 1 1 0A 1 in the K map can be used by more than one group
• Some rule-of-thumb in selecting groups:

– Try to use as few group as possible to cover all
‘1’s.

– For each group, try to make it as large as you can
(i.e., if you can use a 2x2, don’t use a 2x1 even if
that is enough).

1 1 1 01 1

Examples of 3-Variable K-map

f x1x3 x2x3+=

x1x2x3

0 0

1 0

1 1

0 1

00 01 11 10

0

1

34

x1x2x3

1 1

0 0

1 1

0 1 f x3 x1x2+=

00 01 11 10

0

1

• Example: 1, 2, 3, and 4 variables maps are
shown below

Karnaugh maps with up to 4 variables

0
1

A
0
1 1 0

1 1
1 0
1 1

0 1
0 1

1 0
1 0

00 01 11 10
00
01
11
10

AB
CD

1 0
1 1

1 0
1 10

1

00 01 11 10
AB
C

1 0
0 1

0 1
0
1

A
B

35

• What if a function has 5 variables?

0 1 1 010

K-map Example for Adder functions

A B C S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1

∑=)7,4,2,1(),,(mCBAS

∑=)7,6,5,3(),,(mCBACout

AB AB
CoutS

36

1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S = A’B’C + A’BC’ + AB’C’ + ABC

Cout = BC + AC + AB

1 0
0 1

1 0
0 10

1

00 01 11 10
AB
C

0 1
0 0

1 1
1 00

1

00 01 11 10
AB
C

• Don’t care condition is input combination that will never occur.
• So the corresponding output can either be 0 or 1.
• This can be used to help simplifying logic functions.
• Example: F(A,B,C,D)=Σ m(1,3,7,11,15)+ Σ D(0,2,5)

K-map with Don’t Care Conditions

d 1 1 d
00 01 11 10

00

CD
AB

d 1 1 d
00 01 11 10

00

CD
AB

37

F = CD+A’B’

0 d 1 0

0 0

0 0

1 0

1 0

01

11

10

0 d 1 0

0 0

0 0

1 0

1 0

01

11

10

F = CD+A’D

d: Don’t Care Condition

Examples

• Simplify the following function considering:
– the sum-of-products form -- the product-of-sums form

1 1

1 0

1 d

0 1

00 01 11 10

00

01

CD
AB

1 1

1 0

1 d

0 1

00 01 11 10

00

01

CD
AB

38

1 1 1 d

0 0

0 d

0 1

1 1

01

11

10

1 1 1 d

0 0

0 d

0 1

1 1

01

11

10

• Design a 1-bit circuit with proper “glue logic” to use it for n-bits
– It is called a bit slice
– The basic idea of bit slicing is to design a 1-bit circuit and

then piece together n of these to get an n-bit component

• Example:
A h lf dd dd t 1 bit i t

1-bit building blocks to make n-bit circuit

39

• A half-adder adds two 1-bit inputs
• Two half adders can be used to add 3 bits
• A 3-bit adder is a full adder
• A full adder can be a bit slice

to construct an n-bit adder

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

B

C S

A

Half Adder

• Two half adders can be used to add 3 bits
• n-bit adder can be built by full adders
• n can be arbitrary large

Full adder & multi-bit ripple-carry adder

BA

BC BA
Cout2A2

B2 Full

Cout3
Sum3

A3
B3
C3

Full
Adder

Half Adder

4-bit ripple-carry adder

40

B

C S

A

C S C S

Cout
Sum

Cout
Sum

A
B
C

Full
Adder

Cout0
Sum0

A0
B0
Ci

Full
Adder

Cout1
Sum1

A1
B1
C1

Full
Adder

Sum2
B2
C2 Adder

• Design a unit that can do more than one function
• In that case, we can design a function unit for each operation like

ADD, SUB, AND, OR,
• And then select the desired output
• For example, if we want to be able to perform ADD and SUB on

two given operands A and B, and select any one
• Then the following set up will work

Multiple Function Unit Design

41

• Then the following set up will work

ADD
A

B

SUB
A

B

MUX

Select

Result

• Separate ADD and SUB units are expensive
• We can simplify the design
• A - B is the same as adding negation of B to A
• How to negate?

– 2’s complement (i.e., take 1’s complement and add 1)
– Adding 1 is also expensive

ADD/SUB unit design

42

– It needs an n-bit adder in general
– However, we only need to add two bits in each stage

• In the first stage, we need to add 1’s complement of LSB and 1
• In other stages, we need to add carry output of previous bit to 1’s

complement of current bit
• We select B or negation of B depending on the requirement
• We add A to the selected input to obtain the result

• Multiplexers are circuits which select one of many inputs
• In here, we assume that we have one-bit inputs

(in general, each input may have more than one bit)

• Suppose we have eight inputs: I0, I1, I2, I3, I4, I5, I6, I7
• We want one of them to be output based on selection signals
• 3 bits of selection signals to decide which input goes to output

Note the order of selection signals

Multiplexing and Multiplexer

43

• Note the order of selection signals
– X is MSB and Z is LSB X Y Z F

0 0 0 I0
0 0 1 I1
0 1 0 I2
0 1 1 I3
1 0 0 I4
1 0 1 I5
1 1 0 I6
1 1 1 I7

S2
S1
S0 F

0 1 2 3 4 5 6 7

I0 I1 I2 I3 I4 I5 I6 I7

X
Y
Z

8-to-1 Multiplexer

• We can write a logic expression for output F as follows
F = X’ Y’ Z’ I0 + X’ Y’ Z I1 + X’ Y Z’ I2 + X’ Y Z I3

+ X Y’ Z’ I4 + X Y’ Z I5 + X Y Z’ I6 + X Y Z I7
• This circuit can be implemented using

– eight 4-input AND gates and one 8-input OR gates

Multiplexer Implementation

44

S2
S1
S0 F

0 1 2 3 4 5 6 7

I0 I1 I2 I3 I4 I5 I6 I7

X
Y
Z

X Y Z F
0 0 0 I0
0 0 1 I1
0 1 0 I2
0 1 1 I3
1 0 0 I4
1 0 1 I5
1 1 0 I6
1 1 1 I7

Implementing 4-to-1 MUX using 2-to-1 MUXs

S0 2x1 MUX
0 1

I0 I1

S0 S0 2x1 MUX
0 1

I2 I3

S0

45

S0 2x1 MUX
0 1

S1

Making a 2-bit 4-to-1 Multiplexer

A B C D
• Four 2-bit inputs A, B, C, D
• One 2-bit output F
• Two bits of selection signal X Y

X Y F
0 0 A

46

X
Y F

0 1 2 3
4-1

MUXS1
S0

X
Y F

0 1 2 3
4-1

MUXS1
S0

X
Y

F

0 1 B
1 0 C
1 1 D

• Multiplexers can be directly used to implement a function
• Easiest way is to use function inputs as selection signals
• Input to multiplexer is a set of 1s and 0s depending on the

function to be implemented
• We use a 8-to-1 multiplexer to implement function F
• Three select signals are X, Y, and Z, and output is F
• Eight inputs to multiplexer are 1 0 1 0 1 1 0 0

Synthesis of Logic Functions using Multiplexers

X Y Z F

47

Eight inputs to multiplexer are 1 0 1 0 1 1 0 0
• Depending on the input signals

– multiplexer will select proper output

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

S2
S1
S0 F

0 1 2 3 4 5 6 7X
Y
Z

1 0 1 0 1 1 0 0

Implementing 3-variable functions with 4x1 MUX

• Divide the outputs into 4 groups based on X and Y.
• Write the outputs as a function of Z
• There are only 4 possibilities: F=Z, F=Z’, F=0, F=1

Z Z’ 0 1
X Y Z F
0 0 0 0
0 0 1 1 F=Z

48

S1
S0

F

0 1 2 3
X
Y

0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

F=Z'

F=0

F=1

4x1 MUX

Implementing 4-variable functions with 8x1 MUX

 A B C D F
 0 0 0 0 0
 0 0 0 1 1
 0 0 1 0 0
 0 0 1 1 1
 0 1 0 0 1
 0 1 0 1 0
0 1 1 0 0

F=D

F=D

F=D’
S2 0 1 2 3 4 5 6 7A

D D D’0 0 D 1 1

49

 0 1 1 0 0
 0 1 1 1 0
 1 0 0 0 0
 1 0 0 1 0
 1 0 1 0 0
 1 0 1 1 1
 1 1 0 0 1
 1 1 0 1 1
 1 1 1 0 1
 1 1 1 1 1

F=0

F=0

F=D

F=1

F=1

S1
S0

0 1 2 3 4 5 6 7A
B
C

F

8x1 MUX

Implementing 4-variable functions with 4x1 MUX

 A B C D F
 0 0 0 0 0
 0 0 0 1 1
 0 0 1 0 0
 0 0 1 1 1
 0 1 0 0 1
 0 1 0 1 0
0 1 1 0 0

F=D

F=C’D’ D 1

DC DC

50

0 1 1 0 0
 0 1 1 1 0
 1 0 0 0 0
 1 0 0 1 0
 1 0 1 0 0
 1 0 1 1 1
 1 1 0 0 1
 1 1 0 1 1
 1 1 1 0 1
 1 1 1 1 1

F=CD

F=1

S1
S0

F

0 1 2 3
A
B

D 1

4x1 MUX

Implementing 4-variable functions with 4x1 MUX

 A B C D F
 0 0 0 0 0
 0 0 0 1 0
 0 0 1 0 0
 0 0 1 1 0
 0 1 0 0 0
 0 1 0 1 0
0 1 1 0 0

F=

F=

51

 0 1 1 0 0
 0 1 1 1 1
 1 0 0 0 0
 1 0 0 1 0
 1 0 1 0 1
 1 0 1 1 1
 1 1 0 0 0
 1 1 0 1 1
 1 1 1 0 1
 1 1 1 1 1

F=

F=

S1
S0

F

0 1 2 3
A
B 4x1 MUX

Definition of Decoder

• Suppose we have n input bits (which can represent up to 2n

distinct elements of coded information).
• We need a device that allows us to select which of the 2n

elements, devices, memory locations, etc. is being selected.
• In general:

– A decoder has n input bits
– A decoder has 2n (or less) output bits

52

A decoder has 2 (or less) output bits
– As a rule, all but one of the outputs is zero (deselected) at

any time (called one-hot encoded)

• The 2-to-4 decoder is a block which decodes the 2-bit binary
inputs and produces four outputs

• One output corresponding to the input combination is a one
• Two inputs and four outputs are shown in the figure
• The equations are

– y0 = x1’. x0’
– y1 = x1’. x0

2-to-4 Decoder

2-to-4
x1 y0

y1
2

53

y
– y2 = x1 . x0’
– y3 = x1 . x0

• The truth table:

decoderx0 y2
y3

x1 x0 y3 y2 y1 y0
0 0 0 0 0 1

0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

Definition of Encoder

• Encoders perform the inverse function of Decoders.
• An encoder has 2n (or less) input bits and n output bits
• The output bits generate the binary code corresponding to the

input value
• Assuming only one input has a value of 1 at any given time
• Example: An 8-to-3 Encoder

Inputs Outputs

54

p p

A2=D4+D5+D6+D7
A1=D2+D3+D6+D7
A0=D1+D3+D5+D7

D7 D6 D5 D4 D3 D2 D1 D0 A2 A1 A0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1 1

What are the outputs of the following circuits?

2-to-4
decoder

x1

x0

y0
y1
y2
y3

4-to-2
encoder

a1

a0

55

4-to-2
encoder

x1

x0

y0
y1
y2
y3

2-to-4
decoder

b0
b1
b2
b3

Priority Encoders

• Each input signal has a priority level associated with it
• May have more than one 1’s in the input signals
• Outputs indicate the active input that has the highest priority
• Example: 4-to-2 priority encoder

– Assume w3 has the highest priority and w0 the lowest
– y1 y0 indicate the active input with highest priority
– z indicates none of the inputs is equal to 1

56

w3 w2 w1 w0 y1 y0 z
0 0 0 0 d d 0
0 0 0 1 0 0 1
0 0 1 x 0 1 1
0 1 x x 1 0 1
1 x x x 1 1 1

Let i0 = w0 w1’ w2’ w3’
i1 = w1 w2’ w3’
i2 = w2 w3’
i3 = w3

Then y0 = i1 + i3
y1 = i2 + i3

x: both 0 and 1 (irrelevant)

• A 2-to-4 decoder can be designed with an enable signal
• If enable is zero, all outputs are zero
• If enable is 1, then an output corresponding to two inputs is a

one, all others are still zero
• The equations are

– y0 = x1’. x0’. E

Decoder with Enable

E

57

y
– y1 = x1’. x0 . E
– y2 = x1 . x0’. E
– y3 = x1 . x0 . E 2-4 decoder

x1

x0

y0
y1
y2
y3

Truth Table for 2-to-4 Decoder with Enable

x1 x0 E y3 y2 y1 y0

0 0 0 0 0 0 0

0 0 1 0 0 0 1

0 1 0 0 0 0 0

0 1 1 0 0 1 0

58

1 0 0 0 0 0 0

1 0 1 0 1 0 0

1 1 0 0 0 0 0

1 1 1 1 0 0 0

Demultiplexers

• Perform the opposite function of multiplexers
• Placing the value of a single data input onto one of the multiple

data outputs
• Same implementation as decoder with enable
• Enable input of decoder serves as the data input for the

demultiplexer
D

59

2-4 DEMUX
x1

x0

y0
y1
y2
y3

D

• The 3-to-8 decoder can be implemented using two 2-to-4
decoders with enable and one NOT gate

• The implementation is as shown

3-to-8 decoder using a 2-to-4 decoder with Enable

y0
y1

x2
x1

E

60

2-4 decoder
y
y2
y3

2-4 decoder

y4
y5
y6
y7

x0
E

Verilog HDL

Popular Hardware Description Languages (HDLs):
• Verilog HDL

– More popular with US companies
– Similar to C / Pascal programming language in syntax

• VHDL
– More popular with European companies

Si il t Ad i l i t

61

– Similar to Ada programming language in syntax
– More “verbose” than Verilog

Uses of Verilog:
• Synthesis
• Simulation
• Verification

Verilog Syntax

• Module / Signal names:
– Start with a letter
– Follow by any sequence of letter, number, _ and $
– Case sensitive

• Comment by // or /* */
• White spaces (SPACE, TAB, blank line) are ignored.
// An example

62

// An example
module example1 (x1, x2, x3, f);

input x1, x2, x3;
output f;

and (g, x1, x2);
not (k, x2);
and (h, k, x3);
or (f, g, h);

endmodule

// An example
module example1 (x1, x2, x3
, f);input x1, x2, x3;output
f;and (g, x1, x2); not (k, x2
);and (h, k, x3); or (f, g,
h);endmodule

Structural Specification of Logic Circuit

f

x1x2

module example1 (x1, x2, x3, f);
input x1, x2, x3;
output f;

and (g, x1, x2);
not (k x2);

g

k

63

x3

not (k, x2);
and (h, k, x3);
or (f, g, h);

endmodule

h

g

x 3
x 1

x 2 x 4

module example2 (x1, x2, x3, x4, f, g, h);
input x1, x2, x3, x4;
output f, g, h;

and (z1, x1, x3);
and (z2, x2, x4);
or (g, z1, z2);

Another Example of Structural Specification

64

h

f or (z3, x1, ~x3);
or (z4, ~x2, x4);
and (h, z3, z4);
or (f, g, h);

endmodule

Behavioral Specification Continuous Assignment

f

x3

x1x2

// Structural Specification

g

k
h

// Behavioral Specification

65

// Structural Specification
module example1 (x1, x2, x3, f);

input x1, x2, x3;
output f;

and (g, x1, x2);
not (k, x2);
and (h, k, x3);
or (f, g, h);

endmodule

// Behavioral Specification
module example3 (x1, x2, x3, f);

input x1, x2, x3;
output f ;

assign f = (x1 & x2) | (~x2 & x3);

endmodule

Concurrent statement

Behavioral Specification
Procedural (Sequential) Statement

module example5 (x1, x2, x3, f);
input x1, x2, x3;
output f ;
reg f ;

f

x3

x1x2

k
h

Declared as variable (register) if assigned
l i d l

66

reg f ;

always @(x1 or x2 or x3)
if (x2 == 1)

f = x1;
else

f = x3;

endmodule

always block

Sensitivity list

a value in a procedural statement

