
• Combinational circuits
– output is simply dependent on the current input

• Sequential circuits
– output may depend on the input sequence

• The effect of the input sequence can be memorized as a state of 
the system

Sequential Circuit and State Machine
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• So a sequential circuit is also called a State Machine
• Memory elements (usually D flop-flips) are used to store the 

state
• System state changes with input
• A different input sequence produces different final state and 

different output sequence

• Example: 
– A very simple machine to remember which building I am at
– The only input is the clock signal
– The state machine is represented as a state transition 

diagram (or called state diagram) below
– One step (i.e., transition) can be taken whenever there is a 

clock signal

State Transition Diagram (or State Diagram)
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S0 S3

S2S1

Coover Hall

Durham CenterSweeney Hall

Parks Library

Start

• States can be coded as binary combinations of variables
• Let N be total number of states, each state can be represented by 

n=log2 N bits
• n bits can represent up to 2n states
• This is called the state assignment

• A truth table will then give the next state

State Transition Table (State Table)

X Y
S0 0 0
S1 0 1
S2 1 0
S3 1 1

State
Assignment
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• This is called a state transition table (or called state table)
• xn and yn can be specified in terms xo and yo

Current State 
xo  yo 

Next State 
xn  yn 

0    0 0   1 
0    1 1    0 
1    0 1    1 
1    1 0    0 

 

 

S3 1 1

xn = xo ⊕ yo
yn = yo’

The Resulting Sequential Circuit / State Machine

Current State 
xo  yo 

Next State 
xn  yn 

0    0 0   1 
0    1 1    0 
1    0 1    1 
1    1 0    0 

 

yn xn
D Q D Q
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xn = xo ⊕ yo
yn = yo’

Clock
C Q C Q

yo xo

• A counter counts 
• Number of elements in counter determines how many different 

states we need
• For example, an eight-state counter can count eight steps

Counter state machine

Current
X Y Z

Next
X Y Z
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X Y Z X Y Z
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

X=

Y=

Z=

• Counter need not have number of states that is equal to a power 
of 2

• Here is a five state counter
• Is it simpler?

Another counter

Current
X Y Z

Next
X Y Z
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X Y Z X Y Z
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 0 0

X=

Y=

Z=



• In a state transition diagram, state may change with time
• A clock signal represents passage of time
• Each time a clock arrives, state changes to next state
• Clock is an implicit input
• There may or may not be other explicit inputs

• For the previous example let say we also have an explicit input i

State Machine with Explicit Inputs
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• For the previous example, let say we also have an explicit input i
• For the state transition diagram shown, i can be 0 or 1
• Next state depends on current 

state and the value of input i
• When the next state depends 

upon the inputs, the inputs are
examined at the clock edges

S0 S3

S2S1

Coover Hall

Durham 
Center

Sweeney Hall

Parks 
Library

0

1

1 1

1

0

0

0

• State transition table will have two sets of inputs
• Current state variable and explicit input variables
• Total number of row in table is 2(n+m)

– n is number of variables representing states
– m is number of input variables 

State Transition Table with Explicit Inputs 

Current Input Next State

X Y
S0 0 0
S1 0 1
S2 1 0

State
Assignment
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Current
xo  yo 

Input
i 

Next State
xn  yn 

0    0 0 0   1 
0    0 1 1    0 
0    1 0 1    0 
0    1 1 1    1 
1    0 0 1    1 
1    0 1 0    0 
1    1 0 0    0  
1    1 1 0    1 

 

xn=xo’ yo’ i+xo’ yo i’+xo’ yo i+xo yo’ i’

=xo’ i + xo’ yo + xo yo’ i’

yn=xo’ yo’ i’+xo’ yo i+xo yo’ i’+xo yo i

= yo’ i’ + yo i 

S2 1 0
S3 1 1

• Output of a state machine may depend on state, or state & 
input:
– Mealy machine: Output depends on both current state and 

current input (i.e., depends on transition)
– Moore machine: Output depends on current state

• Thus we have two different circuits to implement
– 1. Decides what is the next state

Output of state machine
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– 2. Decides what is the output
• Both circuits are combinational
• States are remembered by memory elements

– Usually D flips-flops are used to remember states

State Transition Diagram with Outputs

• Moore Machine:
(For example, output 1
whenever in Coover)

S0/1 S3/0

S2/0S1/0

Coover Hall

Durham CenterSweeney Hall

Parks Library

0

1

1 1

1

0

0

0
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• Mealy Machine:
(For example, output 1
whenever walking 
between Coover and
Durham)

S0 S3

S2S1

Coover Hall

Durham CenterSweeney Hall

Parks Library

0/0

1/0

1/1 1/0

1/1

0/0

0/0

0/0

Moore machine (outputs depend on current state, but not current inputs)

Overall structure of a State machine

Next
State
Logic

I
N
P
U
T
S

Output
Logic

O
U
T
P
U
T
S

Memory Elements

Combinational
Circuits
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Mealy machine (outputs depend on both current state and current inputs)

Next
State
Logic

I
N
P
U
T
S

Output
Logic

O
U
T
P
U
T
S

Memory Elements

Circuits

Combinational
Circuits

• Start writing a state transition diagram
– It has an initial state
– It has other states to keep track of various activities
– It has some transitions

• Generate a state transition table and a output table
• Write state transition table and output table in binary

Steps in designing a state machine
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– Needs state assignment, i.e., the code used for each state
– State assignment is a complex process
– For the time being assume straightforward combinations

• Derive canonical sum-of-product expressions
– You can simplify the expressions



• Identify how many different things we need to keep track of
• This is critical to know
• Otherwise the number of states (and their meaning) may get out 

of hand very quickly 
• This is different from what is the output of interest (in each state 

we may have some outputs)
• For example, if we are to process a sequence of input bits, 

Determining number of states
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p , p q p ,
depending on interest, the number of states may be different
– If we need to know how many 1’s there are, we need states 

corresponding to the count
– If we need to know if we have even or odd number of 1’s, we 

may need only two states

• Design a state machine that will repeatedly display in binary 
values 1, 3, 5, and 7

• Solutions:
– How many states we need?
– What is the state transition diagram?
– What is the output in each state?
– What is the next state logic?

Example
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What is the next state logic?
– Construct the truth tables with state variables
– Derive the next state logic and output logic
– Draw the circuits

• We need four states: 
S0, S1, S2, S3

Example (contd.)

S0/1

C t N t C t N t C t O t C t O t t

S1/3 S2/5 S3/7

State transitions diagram

State transition 
table

Implementation 
level state 

transition table
Output table

Implementation 
level 

output tables
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Current
State

Next
State

S0 S1
S1 S2
S2 S3
S3 S0

Current
X  Y

Next
X  Y

0  0 0  1
0  1 1  0
1  0 1  1
1  1 0  0

Current
State

Out
put

S0 1
S1 3
S2 5
S3 7

Current
X  Y

Output
L2 L1 L0

0  0 0   0   1
0  1 0   1   1
1  0 1   0   1
1  1 1   1   1

X =  X’Y+XY’ L2 = XY’+XY = X
Y = X’Y’+XY’ = Y’ L1 = X’Y+XY = Y

L0 = X’Y’+X’Y+XY’+XY = X’+X = 1

• Design a state machine to display the characters in the string HELLO 
using a seven segment display

• How many states do we need?
– Five, one for each character
– In state S0 (000) we display H
– In state S1 (001) we display E
– In state S2 (010) we display L

I t t S3 (011) di l L

Another Example for State Machine
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– In state S3 (011) we display L
– In state S4 (100) we display O

• State transitions are
S0 -> S1
S1 -> S2
S2 -> S3
S3 -> S4
S4 -> S0

Example (contd.)

• Next State and Output logic tables are

S0 S1 S2 S3 S4

a
b

c
d

e

f g
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Cur State   Next State State          Output
Xc Yc Zc    Xn Yn Zn Xc Yc Zc    a b c d e f g
0   0   0       0   0   1 0   0   0 0 1 1 0 1 1 1
0   0   1       0   1   0 0   0   1 1 0 0 1 1 1 1
0   1   0       0   1   1 0   1   0 0 0 0 1 1 1 0
0   1   1       1   0   0 0   1   1 0 0 0 1 1 1 0
1   0   0       0   0   0 1   0   0 1 1 1 1 1 1 0

• Design a state machine with 1 bit of input and 1 bit of output
• The output bit will be 1 whenever the number of bits in input 

sequence is divisible by 3
• How many states do we need?
• What are the meaning of the states?

– In state S0 (00), remainder = 0 (i.e., divisible by 3)
– In state S1 (01), remainder = 1 

To Detect if # of 1’s in Input is Divisible by 3
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( )
– In state S2 (10), remainder = 2

• Choose to design a Moore machine
– Output is 1 whenever in state S0

S0/1 S1/0 S2/01 1

1

0 0 0



• State machine by nature are ideally suited to track state and 
detect specific sequence of events

• For example, we may design specific machines to track certain 
pattern in an input sequence

• Examples:
– to count 1’s in a sequence and produce an output if a specific 

State machines as sequence detector
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situation occurs like 3rd one, or every 2nd one, or nth one
– to generate an output or stop if a specific pattern in the 

sequence (such as 011 or 0101 or 1111) is observed
• In each of these cases, it is to create a relationship between 

input and output sequence
• We will review input and output relations for such operations

• n-th one detector, n=2
– Input: 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1
– Output: 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0

• n-th one detector, n=3
– Input: 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1
– Output: 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

Example input/output sequences
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Output: 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
• 011 pattern detector

– Input: 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1
– Output: 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

• 1010 pattern detector
– Input: 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1
– Output: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

• Our goal is to be able to identify minimum number of states
• It is very easy to miss that goal (in terms of number of states)
• Sometimes CAD tools may identify redundant states
• We first discuss the number of possible states to track
• For example in sequence detection, for 011, 

– we need states representing we have not seen the first zero, 
we have seen only the first 0 we have seen 01 and finally

How to design sequence detector
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we have seen only the first 0, we have seen 01, and finally 
we have seen 011

– So a four state system will work
• 1010 has a pattern that also repeats part of the sequence

– So  we need states that represent starting state, received 
first 1, first 10, first 101, and finally 1010 (a total of five state)

– However after we see 1010, we have already seen 10 pattern 
for the next output (i.e., if we have 101010 repeating) 

3-rd One Detector

• Use a Mealy machine design
• 3 states are enough
• Have a similar structure to the Moore machine to detect if # of 

1’s in Input is Divisible by 3

S0 S1 S21/0 1/0

1/1
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• If Moore machine design is used, 4 states is needed

S0 S1 S2

0/0 0/0 0/0

• Four states and state transitions are shown in the figure
• Output: 1 for State S3, 0 for all others

Design of a sequence detector for 011

1S0 S1 S2 S3
01

1
1

00
0

Current Input Next
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State State
S0 0 S1
S0 1 S0
S1 0 S1
S1 1 S2
S2 0 S1
S2 1 S3
S3 0 S1
S3 1 S0

Current
State

Out
put

S0 0
S1 0
S2 0
S3 1

Current
State 

Binary 

S0 0 0 
S1 0 1 
S2 1 0 
S3 1 1 

 

 

State Assignment Output of states

• Four states and state transitions are shown in the figure
• Output: 1 for State S4, 0 for all others

Design of a sequence detector for 1010

Current
State 

Input Next 
State

S0 0 S0 
0

0

S30S0 S1 S2
1

1
0

1
1 S4

0

1
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S0 1 S1
S1 0 S2 
S1 1 S1 
S2 0 S0 
S2 1 S3 
S3 0 S4 
S3 1 S1 
S4 0 S0 
S4 1 S3 

 

 

Current
State

Out
put

S0 0
S1 0
S2 0
S3 0
S4 1

Current 
State 

Binary 

S0 0 0 0 
S1 0 0 1 
S2 0 1 0 
S3 0 1 1 
S4 1 0 0 

 

 

State Assignment Output of states



• Vending Machine
– Collect money, deliver product and change

• Vending machine may get three inputs, n, d, q 
– Inputs are nickel (5c), dime (10c), and quarter (25c)
– Only one coin input at a time
– Product cost is 40c

Does not accept more than 50c (blocks the coin slot)

Another example: a complex vending machine
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– Does not accept more than 50c (blocks the coin slot)
– Returns 5c or 10c back
– Exact change appreciated

• How many states?
• What are the output signals?

• We are designing a Mealy state machine (i.e., output depends on 
both current state and inputs).

• Suppose we ask the machine to directly return the coin if it 
cannot accept an input coin.

• The following two-bit code is used:
– 00 -- no coin, 01 -- nickel, 10 -- dime, and 11 -- quarter

Inputs: I I which represent the coin inserted

Design of Complex Vending Machine
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• Inputs: I1 I2 which represent the coin inserted
• Outputs: C1 C2 P  where C1 C2 represent the coin returned

and P indicates whether to deliver product
• States: S00, S05, S10, S15, S20, S25, S30, S35

– 3 bits are enough to encode the states
– Notice the names (they need not be S0, S1….)

• State assignment: S00 – 000, S05 – 001, S10 – 010, S15 – 011,
S20 – 100, S25 – 101, S30 – 110, S35 – 111 

S00 S20S10 S30

10/001

11/011

State Diagram for Vending Machine

10/000 10/000 10/000

11/110

11/110

11/000

11/000
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S05 S25S15 S35
11/001

10/000 10/000 10/000

11/000

11/101

10/011

11/110

01/001

Algorithmic State Machine (ASM) Charts

• Another way to represent a state machine
• State diagrams are useful when the machine has only a few 

inputs and outputs
• ASM charts may be more convenient for larger machines

State name (a) State box (b) Decision box
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Output signals
or actions

(Moore type)
Condition 
expression

0 (False) 1 (True)

Conditional outputs 
or actions (Mealy type) 

(c) Conditional output box

Example: Moore Machine

Reset 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 
w 1 = 

w 0=

w 0 
1 

A 

B 

Reset 

State Transition Diagram

ASM Chart
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C z 1 = ⁄ 

w 1 = 

w 0 = 
w 0 = w 1 = 

w 

w 0 1 

0 
1 

C 
z 

Example: Mealy Machine

A w 1 = z 1 = ⁄ B w 0 = z 0 = ⁄ 

Reset 
w 1 = z 0 = ⁄ A 

Reset State Transition DiagramASM Chart
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w 0 = z 0 = ⁄ 

w 

w 
0 1 

0 

1 

B 

z



• Clock frequency 
– is the number of rising clock edges (clock ticks) in a fixed 

period of time
– determines the speed of a sequential circuit

• Clock cycle time (or clock period) is the time between two 
rising clock edges

• If circuit runs at clock frequency of f, corresponding clock 
cycle time is

Speed of Sequential circuit and Clock frequency

cycle time is 
– T = 1/f,  or
– f = 1/T

• A frequency of 1 MHz gives a clock period of 1 micro second
• A frequency of 500 MHz gives a clock period of 2 nano second
• A frequency of 2 GHz gives a clock period of 0.5 nano second
• A frequency of 1 GHz gives a clock period of 1 nano second

(1 micro second = 1e-6 second, 1 nano second = 1e-9 second)

• From a rising clock edge, we should allow enough time for:
– D FFs to generate stable output for the state
– next state logic to generate the next state
– D FFs to set up after the next state is available

• Then we can have the next rising clock edge
• Thus, D Flip-Flop propagation delay + Next state logic 

propagation delay + D FF set-up time sets a lower bound to the 
l k l ti

Timing in a Sequential Circuit (State machine)

clock cycle time

Next
State
Logic

I
N
P
U
T
S

Output

Logic

O
U
T
P
U
T
S

D Flip-Flop

Review: Timing Issues of Combinational Circuits

• Contamination delay:
– Minimum delay before any output starts to change once 

input changes
• Propagation delay:

– Maximum delay after which all outputs are stable once input 
changes

X

Y
Z

• Contamination delay = 2
• Propagation delay = 3
(Assume that delay 
of all gates = 1)

• The propagation delay for next-state logic is also called the 
compute time

• Consider a four states system
• State transition table and implementation level state transition 

table are given below

Propagation delay for next-state logic

S0 S1 S2 S3

Current
St t

Next
St t

Current 
X Y

Next 
X Y

• Using the logic expressions below, combination logic for next 
state takes up to two gate delay (if both X and X’ are available)

State State
S0 S1
S1 S2
S2 S3
S3 S0

X  Y X  Y 
0  0 0  1 
0  1 1  0 
1  0 1  1 
1  1 0  0 

 

 

X :=  X’Y+XY’
Y := X’Y’+XY’ = Y’ 

Review: Timing Issues of FFs

R

S

Q

PD
G

R

S

Q

PD
G

C

D

Hold Time

Set-Up Time Propagation Delay

C

D

Q
Set-up
time

Hold
time

Propagation
Delay

For this design:
• Set-up time = 5 
• Hold time = 1
• Prop. delay = 3
(Assume that delay 
of all gates = 1)

• Clock cycle time  >=  FF Prop delay + Compute time + FF set-up 
time

• Clock low time  >=  FF set-up time
• Clock high time  >=  FF Prop delay
• Contamination time of next state circuit  >=  FF hold time 

Timing Constraints for a Sequential Circuit

FF Propagation Time FF Set up Time

FF Hold Time

FF Propagation Time FF Set-up Time

Compute Time


