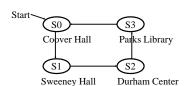
Sequential Circuit and State Machine

- Combinational circuits
 - output is simply dependent on the current input
- · Sequential circuits
 - output may depend on the input sequence
- · The effect of the input sequence can be memorized as a state of
- · So a sequential circuit is also called a State Machine
- · Memory elements (usually D flop-flips) are used to store the
- System state changes with input
- A different input sequence produces different final state and different output sequence

State Transition Diagram (or State Diagram)

- - A very simple machine to remember which building I am at
 - The only input is the clock signal
 - The state machine is represented as a state transition diagram (or called state diagram) below
 - One step (i.e., transition) can be taken whenever there is a clock signal



State Transition Table (State Table)

- · States can be coded as binary combinations of variables
- · Let N be total number of states, each state can be represented by n=log₂ N bits
- · n bits can represent up to 2ⁿ states
- · This is called the state assignment

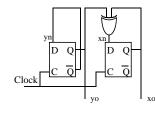
State Assignment

S0 0 0 S1 0 1 S2 1 0 S3 1

- · A truth table will then give the next state
- This is called a state transition table (or called state table)
- · xn and yn can be specified in terms xo and yo

	rrent State yo		ext State yn	
0	0	0	1	$xn = xo \oplus yo$
0	1	1	0	vm = vo'
1	0	1	1	yn = yo'
1	1	0	0	

The Resulting Sequential Circuit / State Machine



	irrent State yo	Next State xn yn
0	0	0 1
0	1	1 0
1	0	1 1
1	1	0 0

 $xn = xo \oplus yo$ yn = yo'

Counter state machine

- · A counter counts
- Number of elements in counter determines how many different states we need
- · For example, an eight-state counter can count eight steps

Current	Next	
XYZ	XYZ	
000	001	X=
001	010	
010	011	Y=
011	100	
100	101	Z=
101	110	
110	111	
111	000	

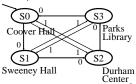
Another counter

- · Counter need not have number of states that is equal to a power
- · Here is a five state counter
- Is it simpler?

Current	Next	
XYZ	XYZ	
000	001	X=
001	010	21-
010	011	Y=
011	100	
100	000	Z=

State Machine with Explicit Inputs

- . In a state transition diagram, state may change with time
- · A clock signal represents passage of time
- · Each time a clock arrives, state changes to next state
- · Clock is an implicit input
- · There may or may not be other explicit inputs
- · For the previous example, let say we also have an explicit input i
- · For the state transition diagram shown, i can be 0 or 1
- Next state depends on current state and the value of input i
- When the next state depends upon the inputs, the inputs are examined at the clock edges



State Transition Table with Explicit Inputs

- · State transition table will have two sets of inputs
- · Current state variable and explicit input variables
- Total number of row in table is 2^(n+m)
 - n is number of variables representing states
 - m is number of input variables

				•		S0	0	0	1
٠	rront	Input	l Na	xt St	ata	S1	0	1	
Cu	Hent	input	IAG	XL OL	ate	S2	1	0	
xo	yo	i	xn	yn		S3	1	1	
0	0	0	0	1					•
0	0	1	1	0	xn=xo' yo' i+xo' yo i'+xo' y	o i+	xo	yo'	i'
0	1	0	1	0					
0	1	1	1	1	=xo' i + xo' yo + xo yo' i'				
1	0	0	1	1	yn=xo' yo' i'+xo' yo i+xo y	o' i'.	_vo	wo	i
1	0	1	0	0	yli=x0 y0 1 +x0 y0 1+x0 y	0 1 -	TAU	yo	1
1	1	0	0	0	= yo' i' + yo i				
1	1	1	0	1	,01.,01				

8

State

Assignment

XΥ

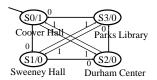
Output of state machine

- Output of a state machine may depend on state, or state & input:
 - Mealy machine: Output depends on both current state and current input (i.e., depends on transition)
- Moore machine: Output depends on current state
- · Thus we have two different circuits to implement
 - 1. Decides what is the next state
 - 2. Decides what is the output
- Both circuits are combinational
- States are remembered by memory elements
 - Usually D flips-flops are used to remember states

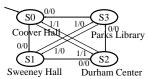
9

State Transition Diagram with Outputs

 Moore Machine: (For example, output 1 whenever in Coover)



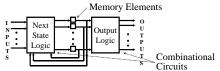
Mealy Machine:
 (For example, output 1
 whenever walking
 between Coover and
 Durham)



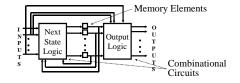
10

Overall structure of a State machine

<u>Moore machine</u> (outputs depend on current state, but not current inputs)



Mealy machine (outputs depend on both current state and current inputs)



Steps in designing a state machine

- Start writing a state transition diagram
 - It has an initial state
 - It has other states to keep track of various activities
 - It has some transitions
- · Generate a state transition table and a output table
- Write state transition table and output table in binary
 - Needs state assignment, i.e., the code used for each state
 - State assignment is a complex process
- For the time being assume straightforward combinations
- Derive canonical sum-of-product expressions
 - You can simplify the expressions

12

Determining number of states

- · Identify how many different things we need to keep track of
- This is critical to know
- Otherwise the number of states (and their meaning) may get out of hand very quickly
- This is different from what is the output of interest (in each state we may have some outputs)
- For example, if we are to process a sequence of input bits, depending on interest, the number of states may be different
 - If we need to know how many 1's there are, we need states corresponding to the count
 - If we need to know if we have even or odd number of 1's, we may need only two states

13

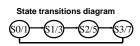
Example

- Design a state machine that will repeatedly display in binary values 1, 3, 5, and 7
- · Solutions:
 - How many states we need?
 - What is the state transition diagram?
 - What is the output in each state?
 - What is the next state logic?
 - Construct the truth tables with state variables
 - Derive the next state logic and output logic
 - Draw the circuits

14

Example (contd.)

· We need four states: S0, S1, S2, S3



;	State tra tab		Implementation level state transition table		
ſ	Current	Next	Current	Next	
	State	State	ΧY	ΧY	
П	S0	S1			

S2

S3

S1

S2

S3

XY 0 0

Current Next XY 0 1 1 0 1 0 1 1 0 0

Output table **Current Out** State put S0 S1 S2 S3

output tables Current Output X Y L2 L1 L L2 L1 L0 0 0 0 0 1 0 1 1 1 1 0 1 1 0

Implementation

1 1 1

17

$$X = X'Y+XY'$$
 $L2 = XY'+XY = X$
 $Y = X'Y'+XY' = Y'$ $L1 = X'Y+XY = Y$

L0 = X'Y' + X'Y + XY' + XY = X' + X = 1

Another Example for State Machine

- Design a state machine to display the characters in the string HELLO using a seven segment display
- How many states do we need?
 - Five, one for each character
 - In state S0 (000) we display H
 - In state S1 (001) we display E
 - In state S2 (010) we display L
 - In state S3 (011) we display L
- In state S4 (100) we display O
- State transitions are

S0 -> S1 S1 -> S2

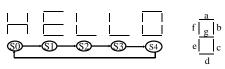
S2 -> S3

S3 -> S4

S4 -> S0

16

Example (contd.)

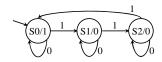


. Next State and Output logic tables are

Cur State	Next State	State	Output
Xc Yc Zc	Xn Yn Zn	Xc Yc Zc	abcdefg
0 0 0	0 0 1	0 0 0	0110111
0 0 1	0 1 0	0 0 1	1001111
0 1 0	0 1 1	0 1 0	0001110
0 1 1	1 0 0	0 1 1	0001110
1 0 0	0 0 0	1 0 0	1111110

To Detect if # of 1's in Input is Divisible by 3

- Design a state machine with 1 bit of input and 1 bit of output
- The output bit will be 1 whenever the number of bits in input sequence is divisible by 3
- How many states do we need?
- What are the meaning of the states?
 - In state S0 (00), remainder = 0 (i.e., divisible by 3)
- In state S1 (01), remainder = 1
- In state S2 (10), remainder = 2
- Choose to design a Moore machine
 - Output is 1 whenever in state S0



State machines as sequence detector

- State machine by nature are ideally suited to track state and detect specific sequence of events
- For example, we may design specific machines to track certain pattern in an input sequence
- · Examples:
 - to count 1's in a sequence and produce an output if a specific situation occurs like 3rd one, or every 2nd one, or nth one
 - to generate an output or stop if a specific pattern in the sequence (such as 011 or 0101 or 1111) is observed
- In each of these cases, it is to create a relationship between input and output sequence
- · We will review input and output relations for such operations

19

Example input/output sequences

• n-th one detector, n=2

 $- \ \, \text{Input:} \quad \ \, 0\ 0\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 1$

- Output: 00000101001000010001010000

n-th one detector, n=3

- Input: 00100111011001010101110001

- Output: 0000001000100000100010000

· 011 pattern detector

- Input: 00100111011001010101110001

- Output: 00000010001000000000100000

1010 pattern detector

- Input: 00100111011001010101110001

- Output: 000000000000001010000000

20

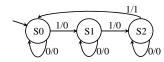
How to design sequence detector

- · Our goal is to be able to identify minimum number of states
- It is very easy to miss that goal (in terms of number of states)
- · Sometimes CAD tools may identify redundant states
- · We first discuss the number of possible states to track
- · For example in sequence detection, for 011,
 - we need states representing we have not seen the first zero, we have seen only the first 0, we have seen 01, and finally we have seen 011
 - So a four state system will work
- 1010 has a pattern that also repeats part of the sequence
 - So we need states that represent starting state, received first 1, first 10, first 101, and finally 1010 (a total of five state)
 - However after we see 1010, we have already seen 10 pattern for the next output (i.e., if we have 101010 repeating)

21

3-rd One Detector

- · Use a Mealy machine design
- · 3 states are enough
- Have a similar structure to the <u>Moore machine</u> to detect if # of 1's in Input is Divisible by 3



· If Moore machine design is used, 4 states is needed

22

Design of a sequence detector for 011

- Four states and state transitions are shown in the figure
- Output: 1 for State S3, 0 for all others

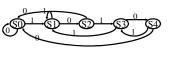
Currei State	nt Input	Next State	State Ass	ianmant	Output	of state
S0	0	S1	State Ass	agiiiieiii	Output	or states
S0	1	S0	Current	Binary	Current	Out
S1	0	S1	State		State	put
S1	1	S2	S0	0 0	S0	0
S2	0	S1	S1	0 1	S1	0
S2	1	S3	S2	10	S2	0
S3	Ò	S1	S3	11	S3	1
S3	1	S0		1		•

23

Design of a sequence detector for 1010

- Four states and state transitions are shown in the figure
- · Output: 1 for State S4, 0 for all others

Curre	nt Input	Next
State	•	State
S0	0	S0
S0	1	S1
S1	0	S2
S1	1	S1
S2	0	S0
S2	1	S3
S3	0	S4
S3	1	S1
S4	0	S0
S4	1	S3



State Assignment Output of states Current Binary Current Out State State put S0 S0 000 S1 001 S1 S2 010 S2 S3 S4 S3 S4 0

24

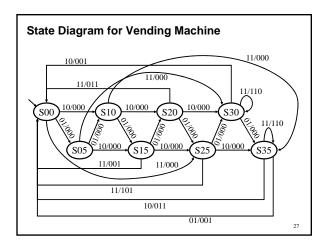
Another example: a complex vending machine

- · Vending Machine
 - Collect money, deliver product and change
- · Vending machine may get three inputs, n, d, q
 - Inputs are nickel (5c), dime (10c), and quarter (25c)
 - Only one coin input at a time
 - Product cost is 40c
 - Does not accept more than 50c (blocks the coin slot)
 - Returns 5c or 10c back
 - Exact change appreciated
- · How many states?
- · What are the output signals?

Design of Complex Vending Machine

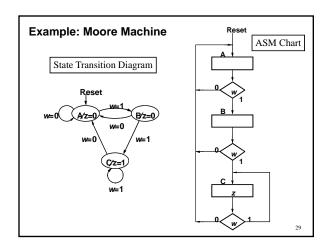
- We are designing a Mealy state machine (i.e., output depends on both current state and inputs).
- Suppose we ask the machine to directly return the coin if it cannot accept an input coin.
- The following two-bit code is used:
 - 00 -- no coin, 01 -- nickel, 10 -- dime, and 11 -- quarter
- Inputs: I1 I2 which represent the coin inserted
- Outputs: $C_1 C_2 P$ where $C_1 C_2$ represent the coin returned and P indicates whether to deliver product
- States: S00, S05, S10, S15, S20, S25, S30, S35
 - 3 bits are enough to encode the states
 - Notice the names (they need not be S0, S1....)
- State assignment: S00 000, S05 001, S10 010, S15 011,

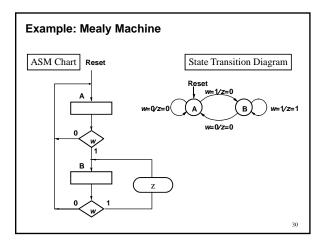
S20 - 100, S25 - 101, S30 - 110, S35 - 111



Algorithmic State Machine (ASM) Charts Another way to represent a state machine State diagrams are useful when the machine has only a few inputs and outputs ASM charts may be more convenient for larger machines State name (a) State box (b) Decision box Output signals or actions Conditio expressio 1 (True) (Moore type) Conditional outputs or actions (Mealy type)

(c) Conditional output box





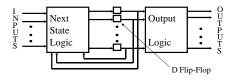
Speed of Sequential circuit and Clock frequency

- Clock frequency
 - is the number of rising clock edges (clock ticks) in a fixed period of time
 - determines the speed of a sequential circuit
- Clock cycle time (or clock period) is the time between two rising clock edges
- If circuit runs at clock frequency of f, corresponding clock cycle time is
 - T = 1/f, or
 - f = 1/T
- . A frequency of 1 MHz gives a clock period of 1 micro second
- . A frequency of 500 MHz gives a clock period of 2 nano second
- A frequency of 2 GHz gives a clock period of 0.5 nano second
- A frequency of 1 GHz gives a clock period of 1 nano second

(1 micro second = 1e-6 second, 1 nano second = 1e-9 second)

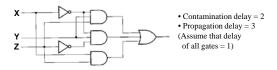
Timing in a Sequential Circuit (State machine)

- From a rising clock edge, we should allow enough time for:
 - D FFs to generate stable output for the state
 - next state logic to generate the next state
 - D FFs to set up after the next state is available
- · Then we can have the next rising clock edge
- Thus, D Flip-Flop propagation delay + Next state logic propagation delay + D FF set-up time sets a lower bound to the clock cycle time



Review: Timing Issues of Combinational Circuits

- Contamination delay:
 - Minimum delay before any output starts to change once input changes
- Propagation delay:
 - Maximum delay after which all outputs are stable once input changes

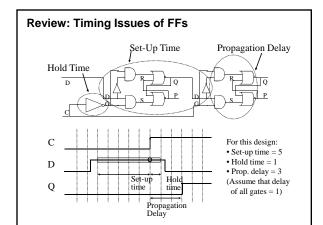


Propagation delay for next-state logic

- The propagation delay for next-state logic is also called the compute time
- · Consider a four states system
- State transition table and implementation level state transition table are given below

Current	Next	Current	Next
State	State	XY	ΧΥ
S0	S1	0 0	0 1
S1	S2	0 1	1 0
S2	S3	1 0	1 1
S3	S0	1 1	0 0

 Using the logic expressions below, combination logic for next state takes up to two gate delay (if both X and X' are available)



Timing Constraints for a Sequential Circuit

- Clock cycle time >= FF Prop delay + Compute time + FF set-up time
- . Clock low time >= FF set-up time
- Clock high time >= FF Prop delay
- Contamination time of next state circuit >= FF hold time

