
• Combinational circuits
– output is simply dependent on the current input

• Sequential circuits
– output may depend on the input sequence

• The effect of the input sequence can be memorized as a state of
the system

Sequential Circuit and State Machine

1

y
• So a sequential circuit is also called a State Machine
• Memory elements (usually D flop-flips) are used to store the

state
• System state changes with input
• A different input sequence produces different final state and

different output sequence

• Example:
– A very simple machine to remember which building I am at
– The only input is the clock signal
– The state machine is represented as a state transition

diagram (or called state diagram) below
– One step (i.e., transition) can be taken whenever there is a

clock signal

State Transition Diagram (or State Diagram)

2

S0 S3

S2S1

Coover Hall

Durham CenterSweeney Hall

Parks Library

Start

• States can be coded as binary combinations of variables
• Let N be total number of states, each state can be represented by

n=log2 N bits
• n bits can represent up to 2n states
• This is called the state assignment

• A truth table will then give the next state

State Transition Table (State Table)

X Y
S0 0 0
S1 0 1
S2 1 0
S3 1 1

State
Assignment

3

g
• This is called a state transition table (or called state table)
• xn and yn can be specified in terms xo and yo

Current State
xo yo

Next State
xn yn

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

S3 1 1

xn = xo ⊕ yo
yn = yo’

The Resulting Sequential Circuit / State Machine

Current State
xo yo

Next State
xn yn

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

yn xn
D Q D Q

4

xn = xo ⊕ yo
yn = yo’

Clock
C Q C Q

yo xo

• A counter counts
• Number of elements in counter determines how many different

states we need
• For example, an eight-state counter can count eight steps

Counter state machine

Current
X Y Z

Next
X Y Z

5

X Y Z X Y Z
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0

X=

Y=

Z=

• Counter need not have number of states that is equal to a power
of 2

• Here is a five state counter
• Is it simpler?

Another counter

Current
X Y Z

Next
X Y Z

6

X Y Z X Y Z
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 0 0 0

X=

Y=

Z=

• In a state transition diagram, state may change with time
• A clock signal represents passage of time
• Each time a clock arrives, state changes to next state
• Clock is an implicit input
• There may or may not be other explicit inputs

• For the previous example let say we also have an explicit input i

State Machine with Explicit Inputs

7

• For the previous example, let say we also have an explicit input i
• For the state transition diagram shown, i can be 0 or 1
• Next state depends on current

state and the value of input i
• When the next state depends

upon the inputs, the inputs are
examined at the clock edges

S0 S3

S2S1

Coover Hall

Durham
Center

Sweeney Hall

Parks
Library

0

1

1 1

1

0

0

0

• State transition table will have two sets of inputs
• Current state variable and explicit input variables
• Total number of row in table is 2(n+m)

– n is number of variables representing states
– m is number of input variables

State Transition Table with Explicit Inputs

Current Input Next State

X Y
S0 0 0
S1 0 1
S2 1 0

State
Assignment

8

Current
xo yo

Input
i

Next State
xn yn

0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 1 1
1 0 0 1 1
1 0 1 0 0
1 1 0 0 0
1 1 1 0 1

xn=xo’ yo’ i+xo’ yo i’+xo’ yo i+xo yo’ i’

=xo’ i + xo’ yo + xo yo’ i’

yn=xo’ yo’ i’+xo’ yo i+xo yo’ i’+xo yo i

= yo’ i’ + yo i

S2 1 0
S3 1 1

• Output of a state machine may depend on state, or state &
input:
– Mealy machine: Output depends on both current state and

current input (i.e., depends on transition)
– Moore machine: Output depends on current state

• Thus we have two different circuits to implement
– 1. Decides what is the next state

Output of state machine

9

– 2. Decides what is the output
• Both circuits are combinational
• States are remembered by memory elements

– Usually D flips-flops are used to remember states

State Transition Diagram with Outputs

• Moore Machine:
(For example, output 1
whenever in Coover)

S0/1 S3/0

S2/0S1/0

Coover Hall

Durham CenterSweeney Hall

Parks Library

0

1

1 1

1

0

0

0

10

• Mealy Machine:
(For example, output 1
whenever walking
between Coover and
Durham)

S0 S3

S2S1

Coover Hall

Durham CenterSweeney Hall

Parks Library

0/0

1/0

1/1 1/0

1/1

0/0

0/0

0/0

Moore machine (outputs depend on current state, but not current inputs)

Overall structure of a State machine

Next
State
Logic

I
N
P
U
T
S

Output
Logic

O
U
T
P
U
T
S

Memory Elements

Combinational
Circuits

11

Mealy machine (outputs depend on both current state and current inputs)

Next
State
Logic

I
N
P
U
T
S

Output
Logic

O
U
T
P
U
T
S

Memory Elements

Circuits

Combinational
Circuits

• Start writing a state transition diagram
– It has an initial state
– It has other states to keep track of various activities
– It has some transitions

• Generate a state transition table and a output table
• Write state transition table and output table in binary

Steps in designing a state machine

12

– Needs state assignment, i.e., the code used for each state
– State assignment is a complex process
– For the time being assume straightforward combinations

• Derive canonical sum-of-product expressions
– You can simplify the expressions

• Identify how many different things we need to keep track of
• This is critical to know
• Otherwise the number of states (and their meaning) may get out

of hand very quickly
• This is different from what is the output of interest (in each state

we may have some outputs)
• For example, if we are to process a sequence of input bits,

Determining number of states

13

p , p q p ,
depending on interest, the number of states may be different
– If we need to know how many 1’s there are, we need states

corresponding to the count
– If we need to know if we have even or odd number of 1’s, we

may need only two states

• Design a state machine that will repeatedly display in binary
values 1, 3, 5, and 7

• Solutions:
– How many states we need?
– What is the state transition diagram?
– What is the output in each state?
– What is the next state logic?

Example

14

What is the next state logic?
– Construct the truth tables with state variables
– Derive the next state logic and output logic
– Draw the circuits

• We need four states:
S0, S1, S2, S3

Example (contd.)

S0/1

C t N t C t N t C t O t C t O t t

S1/3 S2/5 S3/7

State transitions diagram

State transition
table

Implementation
level state

transition table
Output table

Implementation
level

output tables

15

Current
State

Next
State

S0 S1
S1 S2
S2 S3
S3 S0

Current
X Y

Next
X Y

0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

Current
State

Out
put

S0 1
S1 3
S2 5
S3 7

Current
X Y

Output
L2 L1 L0

0 0 0 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 1

X = X’Y+XY’ L2 = XY’+XY = X
Y = X’Y’+XY’ = Y’ L1 = X’Y+XY = Y

L0 = X’Y’+X’Y+XY’+XY = X’+X = 1

• Design a state machine to display the characters in the string HELLO
using a seven segment display

• How many states do we need?
– Five, one for each character
– In state S0 (000) we display H
– In state S1 (001) we display E
– In state S2 (010) we display L

I t t S3 (011) di l L

Another Example for State Machine

16

– In state S3 (011) we display L
– In state S4 (100) we display O

• State transitions are
S0 -> S1
S1 -> S2
S2 -> S3
S3 -> S4
S4 -> S0

Example (contd.)

• Next State and Output logic tables are

S0 S1 S2 S3 S4

a
b

c
d

e

f g

17

Cur State Next State State Output
Xc Yc Zc Xn Yn Zn Xc Yc Zc a b c d e f g
0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 1
0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1
0 1 0 0 1 1 0 1 0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0
1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0

• Design a state machine with 1 bit of input and 1 bit of output
• The output bit will be 1 whenever the number of bits in input

sequence is divisible by 3
• How many states do we need?
• What are the meaning of the states?

– In state S0 (00), remainder = 0 (i.e., divisible by 3)
– In state S1 (01), remainder = 1

To Detect if # of 1’s in Input is Divisible by 3

18

()
– In state S2 (10), remainder = 2

• Choose to design a Moore machine
– Output is 1 whenever in state S0

S0/1 S1/0 S2/01 1

1

0 0 0

• State machine by nature are ideally suited to track state and
detect specific sequence of events

• For example, we may design specific machines to track certain
pattern in an input sequence

• Examples:
– to count 1’s in a sequence and produce an output if a specific

State machines as sequence detector

19

situation occurs like 3rd one, or every 2nd one, or nth one
– to generate an output or stop if a specific pattern in the

sequence (such as 011 or 0101 or 1111) is observed
• In each of these cases, it is to create a relationship between

input and output sequence
• We will review input and output relations for such operations

• n-th one detector, n=2
– Input: 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1
– Output: 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0

• n-th one detector, n=3
– Input: 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1
– Output: 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

Example input/output sequences

20

Output: 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
• 011 pattern detector

– Input: 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1
– Output: 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

• 1010 pattern detector
– Input: 0 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 0 0 0 1
– Output: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

• Our goal is to be able to identify minimum number of states
• It is very easy to miss that goal (in terms of number of states)
• Sometimes CAD tools may identify redundant states
• We first discuss the number of possible states to track
• For example in sequence detection, for 011,

– we need states representing we have not seen the first zero,
we have seen only the first 0 we have seen 01 and finally

How to design sequence detector

21

we have seen only the first 0, we have seen 01, and finally
we have seen 011

– So a four state system will work
• 1010 has a pattern that also repeats part of the sequence

– So we need states that represent starting state, received
first 1, first 10, first 101, and finally 1010 (a total of five state)

– However after we see 1010, we have already seen 10 pattern
for the next output (i.e., if we have 101010 repeating)

3-rd One Detector

• Use a Mealy machine design
• 3 states are enough
• Have a similar structure to the Moore machine to detect if # of

1’s in Input is Divisible by 3

S0 S1 S21/0 1/0

1/1

22

• If Moore machine design is used, 4 states is needed

S0 S1 S2

0/0 0/0 0/0

• Four states and state transitions are shown in the figure
• Output: 1 for State S3, 0 for all others

Design of a sequence detector for 011

1S0 S1 S2 S3
01

1
1

00
0

Current Input Next

23

State State
S0 0 S1
S0 1 S0
S1 0 S1
S1 1 S2
S2 0 S1
S2 1 S3
S3 0 S1
S3 1 S0

Current
State

Out
put

S0 0
S1 0
S2 0
S3 1

Current
State

Binary

S0 0 0
S1 0 1
S2 1 0
S3 1 1

State Assignment Output of states

• Four states and state transitions are shown in the figure
• Output: 1 for State S4, 0 for all others

Design of a sequence detector for 1010

Current
State

Input Next
State

S0 0 S0
0

0

S30S0 S1 S2
1

1
0

1
1 S4

0

1

24

S0 1 S1
S1 0 S2
S1 1 S1
S2 0 S0
S2 1 S3
S3 0 S4
S3 1 S1
S4 0 S0
S4 1 S3

Current
State

Out
put

S0 0
S1 0
S2 0
S3 0
S4 1

Current
State

Binary

S0 0 0 0
S1 0 0 1
S2 0 1 0
S3 0 1 1
S4 1 0 0

State Assignment Output of states

• Vending Machine
– Collect money, deliver product and change

• Vending machine may get three inputs, n, d, q
– Inputs are nickel (5c), dime (10c), and quarter (25c)
– Only one coin input at a time
– Product cost is 40c

Does not accept more than 50c (blocks the coin slot)

Another example: a complex vending machine

25

– Does not accept more than 50c (blocks the coin slot)
– Returns 5c or 10c back
– Exact change appreciated

• How many states?
• What are the output signals?

• We are designing a Mealy state machine (i.e., output depends on
both current state and inputs).

• Suppose we ask the machine to directly return the coin if it
cannot accept an input coin.

• The following two-bit code is used:
– 00 -- no coin, 01 -- nickel, 10 -- dime, and 11 -- quarter

Inputs: I I which represent the coin inserted

Design of Complex Vending Machine

26

• Inputs: I1 I2 which represent the coin inserted
• Outputs: C1 C2 P where C1 C2 represent the coin returned

and P indicates whether to deliver product
• States: S00, S05, S10, S15, S20, S25, S30, S35

– 3 bits are enough to encode the states
– Notice the names (they need not be S0, S1….)

• State assignment: S00 – 000, S05 – 001, S10 – 010, S15 – 011,
S20 – 100, S25 – 101, S30 – 110, S35 – 111

S00 S20S10 S30

10/001

11/011

State Diagram for Vending Machine

10/000 10/000 10/000

11/110

11/110

11/000

11/000

27

S05 S25S15 S35
11/001

10/000 10/000 10/000

11/000

11/101

10/011

11/110

01/001

Algorithmic State Machine (ASM) Charts

• Another way to represent a state machine
• State diagrams are useful when the machine has only a few

inputs and outputs
• ASM charts may be more convenient for larger machines

State name (a) State box (b) Decision box

28

Output signals
or actions

(Moore type)
Condition
expression

0 (False) 1 (True)

Conditional outputs
or actions (Mealy type)

(c) Conditional output box

Example: Moore Machine

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =
w 1 =

w 0=

w 0
1

A

B

Reset

State Transition Diagram

ASM Chart

29

C z 1 = ⁄

w 1 =

w 0 =
w 0 = w 1 =

w

w 0 1

0
1

C
z

Example: Mealy Machine

A w 1 = z 1 = ⁄ B w 0 = z 0 = ⁄

Reset
w 1 = z 0 = ⁄ A

Reset State Transition DiagramASM Chart

30

w 0 = z 0 = ⁄

w

w
0 1

0

1

B

z

• Clock frequency
– is the number of rising clock edges (clock ticks) in a fixed

period of time
– determines the speed of a sequential circuit

• Clock cycle time (or clock period) is the time between two
rising clock edges

• If circuit runs at clock frequency of f, corresponding clock
cycle time is

Speed of Sequential circuit and Clock frequency

cycle time is
– T = 1/f, or
– f = 1/T

• A frequency of 1 MHz gives a clock period of 1 micro second
• A frequency of 500 MHz gives a clock period of 2 nano second
• A frequency of 2 GHz gives a clock period of 0.5 nano second
• A frequency of 1 GHz gives a clock period of 1 nano second

(1 micro second = 1e-6 second, 1 nano second = 1e-9 second)

• From a rising clock edge, we should allow enough time for:
– D FFs to generate stable output for the state
– next state logic to generate the next state
– D FFs to set up after the next state is available

• Then we can have the next rising clock edge
• Thus, D Flip-Flop propagation delay + Next state logic

propagation delay + D FF set-up time sets a lower bound to the
l k l ti

Timing in a Sequential Circuit (State machine)

clock cycle time

Next
State
Logic

I
N
P
U
T
S

Output

Logic

O
U
T
P
U
T
S

D Flip-Flop

Review: Timing Issues of Combinational Circuits

• Contamination delay:
– Minimum delay before any output starts to change once

input changes
• Propagation delay:

– Maximum delay after which all outputs are stable once input
changes

X

Y
Z

• Contamination delay = 2
• Propagation delay = 3
(Assume that delay
of all gates = 1)

• The propagation delay for next-state logic is also called the
compute time

• Consider a four states system
• State transition table and implementation level state transition

table are given below

Propagation delay for next-state logic

S0 S1 S2 S3

Current
St t

Next
St t

Current
X Y

Next
X Y

• Using the logic expressions below, combination logic for next
state takes up to two gate delay (if both X and X’ are available)

State State
S0 S1
S1 S2
S2 S3
S3 S0

X Y X Y
0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

X := X’Y+XY’
Y := X’Y’+XY’ = Y’

Review: Timing Issues of FFs

R

S

Q

PD
G

R

S

Q

PD
G

C

D

Hold Time

Set-Up Time Propagation Delay

C

D

Q
Set-up
time

Hold
time

Propagation
Delay

For this design:
• Set-up time = 5
• Hold time = 1
• Prop. delay = 3
(Assume that delay
of all gates = 1)

• Clock cycle time >= FF Prop delay + Compute time + FF set-up
time

• Clock low time >= FF set-up time
• Clock high time >= FF Prop delay
• Contamination time of next state circuit >= FF hold time

Timing Constraints for a Sequential Circuit

FF Propagation Time FF Set up Time

FF Hold Time

FF Propagation Time FF Set-up Time

Compute Time

