Sequential Circuit and State Machine

- Combinational circuits
- output is simply dependent on the current input
- Sequential circuits
- output may depend on the input sequence
- The effect of the input sequence can be memorized as a state of the system
- So a sequential circuit is also called a State Machine
- Memory elements (usually D flop-flips) are used to store the state
- System state changes with input
- A different input sequence produces different final state and different output sequence

State Transition Diagram (or State Diagram)

- Example:
- A very simple machine to remember which building I am at
- The only input is the clock signal
- The state machine is represented as a state transition diagram (or called state diagram) below
- One step (i.e., transition) can be taken whenever there is a clock signal

The Resulting Sequential Circuit / State Machine

Another counter

- Counter need not have number of states that is equal to a power of 2
- Here is a five state counter
- Is it simpler?

Current	Next	
X Y Z	X Y Z	
000	001	$\mathrm{X}=$
001	010	
010	011	$\mathrm{Y}=$
011	100	
100	000	$\mathrm{Z}=$

State Machine with Explicit Inputs

- In a state transition diagram, state may change with time
- A clock signal represents passage of time
- Each time a clock arrives, state changes to next state
- Clock is an implicit input
- There may or may not be other explicit inputs
- For the previous example, let say we also have an explicit input i
- For the state transition diagram shown, i can be 0 or 1
- Next state depends on current state and the value of input i
- When the next state depends upon the inputs, the inputs are examined at the clock edges

Output of state machine

- Output of a state machine may depend on state, or state \& input:
- Mealy machine: Output depends on both current state and current input (i.e., depends on transition)
- Moore machine: Output depends on current state
- Thus we have two different circuits to implement
- 1. Decides what is the next state
- 2. Decides what is the output
- Both circuits are combinational
- States are remembered by memory elements
- Usually D flips-flops are used to remember states

State Transition Table with Explicit Inputs

- State transition table will have two sets of inputs
- Current state variable and explicit input variables
- Total number of row in table is $2^{(n+m)}$
- \mathbf{n} is number of variables representing states
$-m$ is number of input variables

State Transition Diagram with Outputs

- Moore Machine:
(For example, output 1 whenever in Coover)

- Mealy Machine:
(For example, output 1
whenever walking between Coover and Durham)

Steps in designing a state machine

- Start writing a state transition diagram
- It has an initial state
- It has other states to keep track of various activities
- It has some transitions
- Generate a state transition table and a output table
- Write state transition table and output table in binary
- Needs state assignment, i.e., the code used for each state
- State assignment is a complex process
- For the time being assume straightforward combinations
- Derive canonical sum-of-product expressions
- You can simplify the expressions

Determining number of states

- Identify how many different things we need to keep track of
- This is critical to know
- Otherwise the number of states (and their meaning) may get out of hand very quickly
- This is different from what is the output of interest (in each state we may have some outputs)
- For example, if we are to process a sequence of input bits, depending on interest, the number of states may be different
- If we need to know how many 1's there are, we need states corresponding to the count
- If we need to know if we have even or odd number of 1's, we may need only two states

Example

- Design a state machine that will repeatedly display in binary values 1, 3, 5, and 7
- Solutions:
- How many states we need?
- What is the state transition diagram?
- What is the output in each state?
- What is the next state logic?
- Construct the truth tables with state variables
- Derive the next state logic and output logic
- Draw the circuits

Another Example for State Machine

- Design a state machine to display the characters in the string HELLO using a seven segment display
- How many states do we need?
- Five, one for each character
- In state SO (000) we display H
- In state S1 (001) we display E
- In state S2 (010) we display L
- In state S3 (011) we display L
- In state S4 (100) we display O
- State transitions are

S0 -> S1
S1-> S2
S2 -> S3
S3 -> S4
S4-> S0

Example (contd.)

- Next State and Output logic tables are

Cur State	Next State	State	Output
Xc Yc Zc	Xn Yn Zn	Xc Yc Zc	abcdefg
000	001	000	0110111
001	010	001	1001111
010	011	010	0001110
011	100	011	0001110
100	000	100	1111110

To Detect if \# of 1's in Input is Divisible by 3

- Design a state machine with 1 bit of input and 1 bit of output
- The output bit will be 1 whenever the number of bits in input sequence is divisible by 3
- How many states do we need?
- What are the meaning of the states?
- In state $\mathbf{S 0}$ (00), remainder = 0 (i.e., divisible by 3)
- In state S1 (01), remainder = 1
- In state S2 (10), remainder = 2
- Choose to design a Moore machine
- Output is 1 whenever in state S0

State machines as sequence detector

- State machine by nature are ideally suited to track state and detect specific sequence of events
- For example, we may design specific machines to track certain pattern in an input sequence
- Examples:
- to count 1's in a sequence and produce an output if a specific situation occurs like 3rd one, or every 2nd one, or nth one
- to generate an output or stop if a specific pattern in the sequence (such as 011 or 0101 or 1111) is observed
- In each of these cases, it is to create a relationship between input and output sequence
- We will review input and output relations for such operations

Example input/output sequences

- n-th one detector, $n=2$
- Input: 00100111011001010101110001
- Output: 00000101001000010001010000
- n-th one detector, $n=3$
- Input: 00100111011001010101110001
- Output: 00000010001000000100010000
- 011 pattern detector
- Input: 00100111011001010101110001
- Output: 00000010001000000000100000
- 1010 pattern detector
- Input: 00100111011001010101110001
- Output: 00000000000000001010000000

How to design sequence detector

- Our goal is to be able to identify minimum number of states
- It is very easy to miss that goal (in terms of number of states)
- Sometimes CAD tools may identify redundant states
- We first discuss the number of possible states to track
- For example in sequence detection, for 011,
- we need states representing we have not seen the first zero, we have seen only the first 0 , we have seen 01 , and finally we have seen 011
- So a four state system will work
- 1010 has a pattern that also repeats part of the sequence
- So we need states that represent starting state, received first 1 , first 10, first 101, and finally 1010 (a total of five state)
- However after we see 1010, we have already seen 10 pattern for the next output (i.e., if we have 101010 repeating)

3-rd One Detector

- Use a Mealy machine design
- 3 states are enough
- Have a similar structure to the Moore machine to detect if \# of 1's in Input is Divisible by 3

- If Moore machine design is used, $\mathbf{4}$ states is needed

Design of a sequence detector for 011

- Four states and state transitions are shown in the figure
- Output: 1 for State S3, 0 for all others

Design of a sequence detector for 1010

- Four states and state transitions are shown in the figure
- Output: 1 for State S4, 0 for all others

Current State		Input
S0	Next State	
S0	0	S0
S1	0	S1
S1	1	S2
S2	0	S1
S2	1	S3
S3	0	S4
S3	1	S1
S4	0	S0
S4	1	S3

State Assignment	Output of states			
Current	Binary		Current Cut State	put

Another example: a complex vending machine

- Vending Machine
- Collect money, deliver product and change
- Vending machine may get three inputs, $\mathrm{n}, \mathrm{d}, \mathbf{q}$
- Inputs are nickel (5c), dime (10c), and quarter (25c)
- Only one coin input at a time
- Product cost is 40 c
- Does not accept more than 50c (blocks the coin slot)
- Returns 5c or 10c back
- Exact change appreciated
- How many states?
- What are the output signals?

Design of Complex Vending Machine

- We are designing a Mealy state machine (i.e., output depends on both current state and inputs).
- Suppose we ask the machine to directly return the coin if it cannot accept an input coin.
- The following two-bit code is used:
- 00 -- no coin, 01 -- nickel, 10 -- dime, and 11 -- quarter
- Inputs: $I_{1} I_{2}$ which represent the coin inserted
- Outputs: $C_{1} C_{2} P$ where $C_{1} C_{2}$ represent the coin returned and P indicates whether to deliver product
- States: S00, S05, S10, S15, S20, S25, S30, S35
- 3 bits are enough to encode the states
- Notice the names (they need not be S0, S1....)
- State assignment: S00-000, S05-001, S10-010, S15-011, S20-100, S25-101, S30-110, S35-111

State Diagram for Vending Machine

Algorithmic State Machine (ASM) Charts

- Another way to represent a state machine
- State diagrams are useful when the machine has only a few inputs and outputs
- ASM charts may be more convenient for larger machines

Example: Mealy Machine

Speed of Sequential circuit and Clock frequency

- Clock frequency
- is the number of rising clock edges (clock ticks) in a fixed period of time
- determines the speed of a sequential circuit
- Clock cycle time (or clock period) is the time between two rising clock edges
- If circuit runs at clock frequency of f, corresponding clock cycle time is
- T=1/f, or
$-f=1 / T$
- A frequency of 1 MHz gives a clock period of 1 micro second
- A frequency of 500 MHz gives a clock period of 2 nano second
- A frequency of 2 GHz gives a clock period of 0.5 nano second
- A frequency of 1 GHz gives a clock period of 1 nano second
(1 micro second $=1 \mathrm{e}-6$ second, 1 nano second $=1 \mathrm{e}-9$ second)

Timing in a Sequential Circuit (State machine)

- From a rising clock edge, we should allow enough time for:
- D FFs to generate stable output for the state
- next state logic to generate the next state
- D FFs to set up after the next state is available
- Then we can have the next rising clock edge
- Thus, D Flip-Flop propagation delay + Next state logic propagation delay + D FF set-up time sets a lower bound to the clock cycle time

Review: Timing Issues of Combinational Circuits

- Contamination delay:
- Minimum delay before any output starts to change once input changes
- Propagation delay:
- Maximum delay after which all outputs are stable once input changes

Review: Timing Issues of FFs

For this design - Set-up time = 5 - Hold time = 1 - Prop. delay = 3 (Assume that delay of all gates $=1$)

Propagation delay for next-state logic

- The propagation delay for next-state logic is also called the compute time
- Consider a four states system

- State transition table and implementation level state transition table are given below

Current	Next	Current	Next
State	State	X Y	X Y
S0	S1	00	01
S1	S2	01	10
S2	S3	10	11
S3	S0	11	0

- Using the logic expressions below, combination logic for next state takes up to two gate delay (if both X and X ' are available)
$X:=X^{\prime} Y+X Y^{\prime}$
$Y:=X^{\prime} Y^{\prime}+X Y^{\prime}=Y^{\prime}$

Timing Constraints for a Sequential Circuit

- Clock cycle time >= FF Prop delay + Compute time + FF set-up time
- Clock low time >= FF set-up time
- Clock high time >= FF Prop delay
- Contamination time of next state circuit >= FF hold time

