Introduction

Verilog HDL is a Hardware Description Language (HDL)

HDL is a language used to describe a digital system, for
example, a computer or a component of a computer.

Most popular HDLs are VHDL and Verilog

For analog systems AHDL

Mixed-mode systems MAST-HDL (Sabre)
Verilog programming is similar to C programming

VHDL programming is similar to PASCAL (some say like
Ada) - Is an IEEE standard

Levels of Description

« Switch Level:

— layout of the wires, resistors and transistors on an IC chip
— Easiest to synthesize, very difficult to write, not really used

« Gate (Structural) Level:

— logical gates, flip flops and their interconnection
— Very easy to synthesize, a text based schematic entry system

¢ RTL (dataflow) Level

— The registers and the transfers of vectors of information between registers.
— Most efficiently synthesizable level
— Uses the concept of registers with combinational logic

« Behavioral (algorithmic) Level

— Highest level of abstraction
— Description of algorithm without hardware implementation details
— easiest to write and debug, most difficult to synthesize

* We will focus on the RTL and structural level in the lab

Why Use HDL?

NO OTHER CHOICE
For large digital systems, gate-level design is dead
Millions of transistors on a digital chip

HDL offers the mechanism to describe, test and synthesize
such designs

Impossible to design on a gate or transistor level

Comments start with a *//* for one line or /* to */ across
several lines

Describe a system by a set of modules (equivalent to
functions in C)

2
1A first digital model in Verilog
module simple;
11 Simple Register Transfer Level (RTL) example to demo Verilog
1/ The register A is incremented by one. Then first four bits of B is
/et to "not" of the last four bits of A. C is the “and" reduction
11 of the last two bits of A,
Ifdeclare registers and flip-flops
reg [07] A, B;
g G
i The two "initial"s and “always" will run concurrently
initial begin: stop_at
I Will stop the execution after 20 simulation units.
#20 $stop;
end
1 These statements done at simulation time 0 (since no #k)
initial begin: Init
I Initialize the register A. The other registers have values of "x"
A=0;
i Display a header
sdisplay(‘Time A B CY);
1 Prints the values anytime a value of A, B or C changes
$monitor(" %0d %b %b %D, Stime, A, B, C);
end
imain_process will loop until simulation is over always begin: main_process
always begin: main_process
#LA=A+1; 1 #1 means do after one unit of simulation time
#1B[0:3] = ~A[4:7]; /]~ is bitwise "not" operator
#1C=&A[B7]; // bitwise "and” reduction of last two bits of A
end 4

endmodule

Explanation

In module simple, we declared A and B as 8-bit registers and C a 1-bit register or flip-
flop. Inside of the module, the one "always" and two "initial” constructs describe three
threads of control, i. e., they run at the same time or concurrently. Within the initial
construct, statements are executed sequentially much like in C or other traditional
imperative programming languages. The always construct is the same as the initial
construct except that it loops forever as long as the simulation runs. The notation #1
means to execute the statement after delay of one unit of simulated time. Therefore, the
thread of control caused by the first initial construct will delay for 20 time units before
calling the system task $stop and stop the simulation. The $display system task allows
the designer to print a message much like printf does in the language C. Every time unit
that one of the listed variables' value changes, the $monitor system task prints a
message. The system function $time returns the current value of simulated time.

Simulation output

Time A
000000000 XXOXXXXXX X
100000001 XXXXXXXX X
200000001 1110x00x X
300000001 1110x00x 0
400000010 1110x0x 0
500000010 1101xxxx 0
700000011 1101xxxx 0
800000011 1100xxxx 0
900000011 1100xxxx 1
1000000100 1100xxxx 1
1100000100 1011xxxx 1
1200000100 1011xxxx 0
1300000101 1011x00x 0
1400000101 1010x0xx 0
16 00000110 1010x0xx 0
17 00000110 1001xxxx 0
1900000111 1001xxxx 0

Stop at simulation time 20

Lexical Conventions

Keywords, e. g., module, are reserved and in all lower case
letters. Verilog is case sensitive

Spaces are important in that they delimit tokens in the
language.

Numbers are specified in the traditional form of a series of
digits with or without a sign but also in the following form:
<size><base format><number>

— <size>: number of bits (optional)

— <base format>: is the single character ' followed by one of the

following characters b, d, o and h, which stand for binary, decimal,
octal and hex, respectively.

— <number>: contains digits which are legal for the <base format>
7

Examples:
549 /I decimal number
'h 8FF /I hex number
'0765 /I octal number

4'pl11 /I 4-bit binary number 0011

3'b10x /I 3-bit binary, least significant bit unknown
5'd3 /I 5-bit decimal number

-4'b11 /I 4-bit two's complement of 0011 or 1101

Lexical Conventions

String: is a sequence of characters enclosed in double
quotes. “this is a string"

Operators (some examples:)

— Arithmetic: +, - 1 ~*/

— Shift: <<>> Relational: < <=>>= === === |==

— Logical && |.

Identifier: Equivalent to variable names: Identifiers can
be up to 1024 characters.

Program Structure

A digital system as a set of modules

Each module has an interface to other module
(connectivity)

GOOD PRACTICE: place one module per file (not a
requirement)

Modules may run concurrently

Usually one top level module which invokes instances of
other modules

Usually called a stimulus block

10

MODULES

represent bits of hardware ranging from simple gates to
complete systems, e. g., @ microprocessor.

Can either be specified behaviorally or structurally (or a
combination of the two)

The structure of a module is the following:

- module <module name> (<port list>);

- <declares>

- <module items>

- endmodule
+ <module name>: is an identifier that uniquely names the module.
« <port list> is a list of input, inout and output ports which are used to connect to other modules.
« <declares> section specifies data objects as registers, memories and wires as wells as

procedural constructs such as functions and tasks.

« <module items> may be initial constructs, always constructs, continuous assignments or
instances of modules. 1

Behavioral Example: NAND

Here is a behavior specification of a module NAND
— /I Behavioral Model of a Nand gate

— /I By Dan Hyde, August 9, 1995

— module NAND(in1, in2, out);

— inputinl,in2;

- outputout;

- /I continuous assign statement

— assignout = ~(inl & in2);

— endmodule

12

Explanation

e The ports inl, in2 and out are labels on wires. The
continuous assignment assign continuously watches for
changes to variables in its right hand side and whenever
that happens the right hand side is re-evaluated and the
result immediately propagated to the left hand side (out).

« The continuous assignment statement is used to model
combinational circuits where the outputs change when one
wiggles the input.

» Here is a structural specification of a module AND
obtained by connecting the output of one NAND to both
inputs of another one.

13

Structural Example: AND

« module AND(in1, in2, out);
« /I Structural model of AND gate from two NANDS

inputini, in2;
+ outputout;
. wirewl;
. /1 two instances of the module NAND

+ NAND NANDA(in1, in2, wl);
NAND NAND2(w1, wi, out);
« endmodule
— This module has two instances of the NAND module called
NAND1 and NAND?2 connected together by an internal wire wl.

14

Instance

» The general form to invoke an instance of a module is :
<module name> <parameter list> <instance name> (<port list>);

« <parameter list> are values of parameters passed to the
instance.

» An example parameter passed would be the delay for a
gate.

15

Stimulus Block: module fest_AND;
. 1 High level module to test the two other modules

The following module isa ~ r9a.
. . wire outl, out2;
high level module which
sets some test data and sets initial begin // Test data

itori a=0; b=0;
up the monitoring of facy
variables. #b=1;
#la=0;

end

initial begin // Set up monitoring
$monitor("Time=%0d a=%b b=%b out1=%b out2=%b",
$time, a, b, out, out2);
end
Il Instances of modules AND and NAND
AND gatel(a, b, out2);
NAND gate2(a, b, outl);

endmodule

16

« Notice that we need to hold the values a and b over time. Therefore,
we had to use 1-bit registers. reg variables store the last value that was
procedurally assigned to them (just like variables in traditional
imperative programming languages). wires have no storage capacity.
They can be continuously driven, e. g., with a continuous assign
statement or by the output of a module, or if input wires are left
unconnected, they get the special value of x for unknown.

« Continuous assignments use the keyword assign whereas procedural
assignments have the form <reg variable> = <expression> where the
<reg variable> must be a register or memory. Procedural assignment
may only appear in initial and always constructs.

« The statements in the block of the first initial construct will be
executed sequentially, some of which are delayed by #1, i. e., one unit
of simulated time. The always construct behaves the same as the initial
construct except that it loops forever (until the simulation stops). The
initial and always constructs are used to model sequential logic (i. e.,
finite state automata).

17

Output.

Time=0 a=0 b=0 out1=1 out2=0
Time=1 a=1 b=0 out1=1 out2=0
Time=2 a=1 b=1 out1=0 out2=1
Time=3 a=0 b=1 out1=1 out2=0

18

Procedural vs. Continuos
Assignments

« Procedural assignment changes the state of a register
— sequential logic
— Clock controlled
« Continuous statement is used to model combinational
logic.
— Continuous assignments drive wire variables and are evaluated and

updated whenever an input operand changes value. It is important
to understand and remember the difference.

19

Physical Data Types
« modeling registers (reg) and wires (wire).
« register variables store the last value that was procedurally
assigned to them
 wire variables represent physical connections between
structural entities such as gates
— does not store anything, only a label on a wire
» The reg and wire data objects may have the following

possible values:
0 logical zero or false
1 logical one or true
X unknown logical value
z high impedance of tristate gate
— reg variables are initialized to x at the start of the simulation. Any

— wire variable not connected to something has the x value.

Register Sizes

« Size of a register or wire in the declaration

— reg [0:7]1 A, B;
— wire [0:3] Dataout;
— reg [7:0] C;

« specify registers A and B to be 8-bit wide with the most
significant bit the zeroth bit, whereas the most significant
bit of register C is bit seven. The

« wire Dataout is 4 bits wide.

initial begin: intl
A =8h01011010;
B = {A[0:3] | A[4:7], 4b0000};

end
B is set to the first four bits of A bitwise or-ed with the last four bits of A and then concatenated with
0000. B now holds a value of 11110000. The
{} brackets means the bits of the two or more arguments separated by commas are concatenated
together.

20
« Instead of C's { } brackets, Verilog HDL uses begin and
end.
« The{ } brackets are used for concatenation of bit strings
if (A==4)
begin case (sig)
Bd: z 1'bz: $display("Signal is floating");
en
else 1'bx: $display("Signal is unknown");
begin default: $display("Signal is %b", sig);
B=4 endcase
end
case (<expression>)
<valuel>: <statement>
<value2>: <statement>
default: <statement>
endcase
22

Repetition

The for statement is very close to C's for statement except
that the ++ and

-- operators do not exist in Verilog. Therefore, we need to

.

usei=i+1 i=0;
while(i < 10)
for(i=0;i<10;i=i+1) begin
begin $display(“i= %0d", i);
$display("i= %0d", i); izi+1;
end repeat (5) end
begin
S$display("i=%0d", i);
izi+l;
end

23

Blocking and Non-blocking
Procedural Assignments

« Blocking assignment statement (= operator) acts much like
in traditional programming languages.
— The whole statement is done before control passes on to the next
statement.
« Non-blocking (<= operator) evaluates all the right-hand
sides for the current time unit and assigns the left-hand
sides at the end of the time unit.

24

11 testing blocking and non-blocking assignment
module blocking;
reg [0:7] A, B;
initial begin: initl
A=3;
#1 A=A+ 1; //blocking procedural assignment
B=A+1;
$display("Blocking: A= %b B=%b", A, B);

A=3;
#1 A <= A +1; Il non-blocking procedural assignment

B<=A+1;

#1 $display("Non-blocking: A= %b B= %b", A, B);
end

endmodule

25

Output

» Blocking: A=00000100 B= 00000101
» Non-blocking: A= 00000100 B= 00000100

26

Timing and Delay Control

* If there is no timing control, simulation time does not
advance. Simulated time can only progress by one of the
following:

. 1. gate or wire delay, if specified.

. 2. a delay control, introduced by the # symbol.

. 3. an event control, introduced by the @ symbol.
. 4. the wait statement.

* The order of execution of events in the same clock time
may not be predictable.
e #10A=A+1,;

— specifies to delay 10 time units before executing the procedural
assignment statement. The # may be followed by an expression
with variables.

27

Events

« The execution of a procedural statement can be triggered
with a value change on a wire or register, or the occurrence
of a named event. Some examples:

@r begin Il controlled by any value change in
A =B&C; 11 the register r
end

@(posedge clock2) A = B&C; // controlled by positive edge of clock2
@(negedge clock3) A = B&C; // controlled by negative edge of clock3
forever @(negedge clock3) // controlled by negative edge of clock3
begin /I This has the same effect as the previous statement

A =B&C;
end 28

Naming events

 Verilog also provides features to name an event and then to
trigger the occurrence of that event. We must first declare
the event:
event eventg;
— To trigger the event, we use the -> symbol :
- -> evento;
To control a block of code, we use the @ symbol as shown:
- @(event6) begin
- <some procedural code>
- end

29

Wait Statement

« The wait statement allows a procedural statement or a
block to be delayed until a condition becomes true.

wait (A == 3)
- begin
- A=B&C;
- end

¢ The difference between the behavior of a wait statement
and an event is that

— the wait statement is level sensitive whereas @(posedge clock); is
triggered by a signal transition or is edge sensitive.

30

