
Introduction

• Rapidly changing field:
– vacuum tube -> transistor -> IC -> VLSI
– memory capacity and processor speed is doubling every 1.5 

years:
• Things you’ll be learning:

– Foundation of computing, design methodologies, issues in
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Foundation of computing, design methodologies, issues in 
design

– how to analyze their performance (or how not to!)
• Why learn this stuff?

– You want to design state-of-art system
– you want to call yourself a “computer scientist or engineer”
– you want to build software people use (need performance)
– you  need to make a decision or offer “expert” advice

What is a computing?

• In 1960, "computer" was still understood to be a person
– A person who could compute

• By contrast, a recent dictionary begins the definition as
– A "computer" is "An electronic machine..." 

• But computing has had many abstraction
• We would learn about some of them today
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Consider An Example: Example 1

• Let us evaluate an expression
– A=B+C+D+E*F

• It can also be written as
– A=(B+C)+D+E*F
– A=(B+C+D)+E*F
– A=(B+C+D)+(E*F)

A B (C D) E*F
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– A=B+(C+D)+E*F
• But are these correct?

– A=(B+C+D+E)*F
– A=B+C+(D+E*F)

• Depends on what are the rules for evaluating expressions
• What are we computing?
• What is the model?

What is A Computing Abstraction? 

• Consider computation a simple expression
– A=B*C

• What do we need to do to compute?
– Need storage for B
– Need storage for C
– Multiply

f
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– Need storage for  A
– How would you do it on your calculator?

• What if you do not have multiplier?
• But you have black boxes that compute, add,  log/alog

– Log A = Log B + Log C

• It is a functional transformation
• How do we achieve the computation? Put the blocks together

Consider Another Example: Example 2 

• Consider the computation Y = X3 – X2 + X - 1

• How many operations?

– How many multiply?

/ ?
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– How many adds/subs?

– How many storage?

• Is this the best we can do?

• How do we achieve efficiency is computation?

A Possible Solution: Example 2

• How many operations?

– How many multiply? 2
– How many adds/subs? 3
– How many storage?
– How much time?
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• Is this the best we can do?
– For multiplication
– Probably we can argue
– What about adds/subs?

• This is not very efficient



Another Possible Solution: Example 2 

• Simplify the function by factorization?

– How many multiply? 2
– How many adds/subs? 2
– How many storage?
– How much time?
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• Is this the best we can do?
– For *, probably we can argue
– What about adds/subs?

• Another factorization does not change number of operations

Consider One More Example: Example 3 

• Consider the computation
– No constraints on values

• How many operations?

– How many multiply?

/ ?
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– How many adds/subs?

– How many storage?

• Is this the best we can do?

• How do we achieve efficiency is computation?

A Possible Solution: Example 3 

• How many operations?
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– How many multiply? 6, but one can be saved easily
– How many adds/subs? 3
– How many storage?
– How much time?

Another Way to Solution: Example 3 

• We can view the computation differently
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• Why this form?
– Provides a building block for computation

• But has each block big, 4 inputs, 2 outputs

Yet Another Way to Solution: Example 3 

• We can look at the expression differently
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• How many operations?
• Why this form?

– Provides a way to optimize and provides a building block

Point of Discussion 

• A good computation structure require some thinking
• Optimize on hardware design cost
• Optimize on time for computation
• There may be a tradeoff that needs to be explored
• Identify common building blocks that can be implemented 

and used to realize interesting computations
Always consider
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• Always consider
– How many operations?
– How many time steps?
– What is the tradeoff?
– Solutions may not be obvious



Computing with a designed Machine 

• Consider computation in example 1 (An user may like to 
directly say this as is)
– A=B*C

• A given machine has facility to load variables and perform 
arithmetic and complex functions (who designed it?)

• So how do we compute?
• Here is a conceptual program
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• Here is a conceptual program
– Load B, mem1
– Load C, mem2
– Multiply mem1, mem2, mem3
– Store A, mem3

• On your simple calculator
– Key in value of B
– Press multiply
– Key in value of C
– Press = and Read A out

Program Example 2 

• Required computation is
• A complex program may look like

– X = value
– Y = X3 – X2 + X – 1

• A simple program may look like
– Load X, mem1
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Load X, mem1
– Multiply mem1, mem1, mem2
– Multiple mem1, mem2, mem3
– Sub mem3, mem2, mem4
– Add mem4, mem1, mem5
– Load #1, mem6
– Sub mem5, mem6, mem7
– Store Y, mem7

• Do we need all these memory locations?

Program Example 2 Differently

• Factorized function is

• A simple program may look like
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Now Consider Our Complex Example – 3 

• Required computation is
• How do we approach this
• We need some structure to store variables

– An array structure k[i], i = 0, 1, 2, 3, ...
– A variable name X
– Store powers of X, i.e., Xi in xpower[i], i = 0, 1, 2, 3, …
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– A result location Y
– X is given by user
– K[i] is filled in by user
– Y is initially zero
– Partial Y computation is, Y = k[0]
– Also, xpower[0] = 1
– At each step i = 1, 2, 3, …, we have 3 inputs and 2 outputs

• we take xpower[i-1], partial result Y, and k[i]
• And compute xpower[i] and a new partial result Y

Now Program Example – 3 Using Alternate  

• What is the big difference?
• Block is simple, but need to start from other end
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Differences Between the two Programs

• First approaches computes a 3-inputs, 2-outputs function
• The second one uses a 3-input, 1-output function

– Mathematically that is how we prefer to write functions
• First method can be used for successive addition of term
• The second method requires us to know how many terms
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Computing Functions: Difference Engine

• Consider the computation Y = X3 – X2 + X – 1
• Consider the table
• What is going on each row
• Can you name each row?
• Can you tell how an entry in a row is computed?
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

-1 0 5 20 51 104 185 300 455 656 909 1220 1595 2040

1 5 15 31 53 81 115 155 201 253 311 375 445

4 10 16 22 28 34 40 46 52 58 64 70

6 6 6 6 6 6 6 6 6 6 6

Difference Engine Abstraction

• Suppose you want to calculate y = Sin (x) 
• Need a Sin calculator

– Looks cheap on your calculator, it is expensive computation
– How would you go about it?

• Consider a Taylor series expansion
– y = Sin (x) = x – x3/3! + x5/5! – x7/7! +……
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• Based on computing differences, a finite n-th order polynomial can 
be differentiated n times, which can be represented by a difference

• What degree polynomial is sufficient?
– Depends on accuracy needed (we will visit that many times)

• Let us consider only two terms:
– y = Sin (x) = x – x3/3!

Calculating using Difference Engine

• To compute value of sin(x) at x(0), x(1), x(2), x(3), x(4), x(5), ……… 
such that difference in two consecutive values of x is small
– Δx = x(i+1) – x(i)
– y(x(i)) = sin (x(i)) = x(i) – x(i)3/3! 

• For simplicity, we will drop () and denote the corresponding values 
of y also as y0, y1, y2, y3, …..
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• We can calculate y0, y1, y2, and y3 by hand and also call them Δ0y0, 
Δ0y1, Δ0y2, and Δ0y3, respectively

• Why are we doing it?

• That forms the basis of difference engine abstraction

Difference Engine (cond.)

• If we differentiate the function, forth differentiation will yield a 0
• What about the third differentiation?

– A constant (value is -1 in this case)
– And others can be calculated as well

• First order difference can be written as 
– Δ1y0 = y1-y0; Δ1y1 = y2-y1; Δ1y2 = y3-y2

• Second order difference can be written as 
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– Δ2y0 = Δ1y1 - Δ1y0 = y2-2y1+y0
– Δ2y1 = Δ1y2 – Δ1y1 = y3-2y2+y1

• Third order difference can be written as
– Δ3y0 = Δ2y1 - Δ2y0 = y3-3y2+3y1-y0

• And the forth order difference is Δ4y0 = 0
• Suppose we know Δ3y0, Δ2y0, Δ1y0, and Δ0y0
• Using this we can recursively compute Δ3y1, Δ2y1, and Δ1y1, and 

Δ0y1
• And then all y2 and y3, and y4………

Difference Engine Example

• IN: x0 x1 x2 x3 x4 x5 x6
• OUT: y0 y1 y2 y3 y4 y5 y67
• 0th Diff: Δ0y0 Δ0y1 Δ0y2 Δ0y3 Δ0y4 Δ0y5 Δ0y6
• 1st Diff: Δ1y0 Δ1y1 Δ1y2 Δ1y3 Δ1y4 Δ1y5 Δ1y6
• 2nd Diff: Δ2y0 Δ2y1 Δ2y2 Δ2y3 Δ2y4 Δ2y5 Δ2y6
• 3rd Diff: Δ3y0 Δ3y1 Δ3y2 Δ3y3 Δ3y4 Δ3y5 Δ3y6
• In general
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– Δny(i+1) = Δny(i) for nth order function and 
– Δj+1y(i) = Δjy(i+1) – Δjy(i) for j = 0, 1, 2, … n-1, and i = 0, 1, 2, …
– Or Δjy(i+1) = Δjy(i) + Δj+1y(i) for j = 0, 1, 2, … n-1

• So if we know the values in the first column, we can compute 
second column and so on 

• The structure need n+1 memories (to store a column) and n adders
• One can also write a C program to compute a column at a time

– And the first column is obtained by calculating values by hand

Difference Engine Organization
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• We are all familiar with decimal numbers
• Consider a number 2375
• What digits representing thousand, hundred, ten and one’s place
• How did you get it?
• Give me an algorithm

– Divide by 1000, result is thousand place value
S bt t 1000*th d l l

Decimal System
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– Subtract 1000*thousand place value
– Divide by 100, result is hundred place value
– Subtract 100*hundred place value 
– Divide by 10, result is ten place value
– Subtract 10*ten place value
– Remainder is one place value

• What is good about this algorithm
• What is bad about it?

• Divide by 10
• Remainder is one place value
• Divide the result by 10
• Remainder is ten place value
• Divide the result by 10
• Remainder is hundred place value

Di id th lt b 10

An Easier Algorithm
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• Divide the result by 10
• Remainder is thousand place value

• Any time result is zero, that means no more value

• Division is always by 10

• We always need result and remainder

• Divide by b
• Remainder is one place value
• Divide the result by b
• Remainder is ten place value
• Divide the result by b
• Remainder is hundred place value

Di id th lt b b

Any Base b Algorithm
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• Divide the result by b
• Remainder is thousand place value

• Any time result is zero, that means no more value

• Division is always by b

• Remainder is always between 0 and b-1

• Information theory: discusses how to deal with information
• We only deal with some aspects of it
• Virtually all computers now store information in binary form
• A binary number system has two digits, 0 and 1
• Combination of binary digits represent various kind of information
• Examples

01001011

Information Representation
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– 01001011
– It can be interpreted as an integer value, a character code, a 

floating point number….
• Non binary numbers are also possible
• How do we  represent negative numbers?

i.e., which bit patterns will represent which numbers?

Abstraction

• Delving into the depths 
reveals more information

• An abstraction omits unneeded detail, 
helps us cope with complexity

swap(int v[], int k)�
{int temp;�
   temp = v[k];�
   v[k] = v[k+1];�
   v[k+1] = temp;�
}

swap:�
      muli $2, $5,4�
      add  $2, $4,$2�
      lw   $15, 0($2)�

l $16 4($2)

C compiler

Assembly�
language�
program�
(for MIPS)

High-level�
language�
program�
(in C)
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What are some of the details that 
appear in these familiar abstractions?

      lw   $16, 4($2)�
      sw   $16, 0($2)�
      sw   $15, 4($2)�
      jr   $31    

00000000101000010000000000011000�
00000000100011100001100000100001�
10001100011000100000000000000000�
10001100111100100000000000000100�
10101100111100100000000000000000�
10101100011000100000000000000100�
00000011111000000000000000001000

Binary machine�
language�
program�
(for MIPS)

Assembler

Historical Perspective

• 1642 Pascal: Mechanical Computer
• 1671: Gottfried Leibniz ADD/SUB/MUL/DIV
• 1801: Automatic Control of Weaving Process
• 1827 The Difference Engine by Charles Babbage
• 1936: Zuse Z1: electromechanical computers
• 1941: Zuse Z2

1943: Zuse Z3
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• 1943: Zuse Z3
• 1944: Aiken: Ark 1 at Harvard
• 1942-45: ABC at Iowa State (Atanasoff-Berry Computer)
• 1946: ENIAC: Eckert and Mauchley: Vacuum Tube
• 1945 EDVAC by von-Neumann machine, father of modern computing



• Easy to represent
– Off and On
– Open and close switch
– Head and tail on a coin
– Polarity of magnetization
– 0 and nonzero voltage levels

How to represent information in binary?

Why Binary?
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• How to represent information in binary?
• Say we want to represent positive number 0 and 1

– 0 is 0 and 1 is 1
• say we want to represent red and green colors

– 0 is red and 1 is green (or vice versa)
• Say we want to represent fall and spring semesters

– 0 is fall and 1 is spring (or vice versa)

• Numbers 0 to 7
– We use combination of digits

• 1 digits gives us two combination
• 2 will yield four
• 3 will yield 8

Need three bits (binary digits)

More Complicated Examples
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– Need three bits (binary digits)
• What if we want to represent  16 alphabets - Need four bits
• What if we want to represents numbers from 11 to 25?
• Homework Problem:

– For each part below devise a scheme to represent, in binary, 
each set of symbols 

• (A) Numbers: 0, 1, 2, 3, 4, 5, 6, 7
• (B) Alphabets: A, B, C, D, E, F
• (C)  Integers from 21 to 36

Bits and Combinations

# of Bits

1

2

3

4

# of quantities

2

4

8

16

•What happens in other number 
systems?

•In base b, n digits give bn 

combinations

•Base 10: decimal
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..
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n

16

..

..

..

2n

•Base 8: Octal

•Base 16: Hexadecimal

• Positional value
• Binary digits are numbered
• Right most digit is 0
• Next to that is a 1
• And so on up to n-1 in an n-bit representation
• Decimal point is implied at the right of bit 0

Each bit is assigned a weight

Representation of Positive Numbers

x x x x x x x x

7 6 5 4 3 2 1 0
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• Each bit is assigned a weight
• The weight of ith bit is 2i

• Using this notation
– The value of an n bit sequence is
– 2n-1 xn-1 + 2n-2 xn-2 + …. + 21 x1 + 20 x0

– = 

Bit # Weight
0      20

1      21

2      22

3      23

∑
−=

=

1

0
2

ni

i
i

i x

• Convert 0101 into decimal
– Position: 3 2 1 0
– Weight: 8 4 2 1
– Digits: 0 1 0 1
– Decimal value: 8 * 0 + 4 * 1 + 2 * 0 + 1 * 1 =  5

• Convert 10110101 into decimal
Position: 7 6 5 4 3 2 1 0

Some Examples
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– Position: 7     6    5    4    3    2    1    0
– Weight: 128 64  32 16   8    4    2    1
– Digits: 1     0    1    1    0    1    0    1
– Decimal value: 128*1+64*0+32*1+16*1+8*0+4*1+2*0+1*1=181

• Now try 10000000 
• And try 01111111

• First see the largest weight of a binary positional digit contained in 
the number

• Put that binary digit = 1 and subtract weight
• Then try subtracting the next bit’s weight
• If successful

– next bit is 1, else next bit is 0 (and restore the value)
• Repeat the last two steps until done

And What About the Reverse Operation?
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• Repeat the last two steps until done
• Convert decimal number 181 into binary
• Largest weight is 128, subtract 128 and set bit 7 =  1
• Try subtracting 64 out of remainder 53 (181-128)
• No successful, so the next digit is 0
• Try weight 32, 16, 8, 4, 2, and 1 successively
• Number is 1 0 1 1 0 1 0 1



• Convert decimal number 181 into binary
• Start dividing by 2
• Successive remainders are digits from right
• 181/2 = 90 remainder 1
• 90/2 = 45 remainder 0
• 45/2 = 22 remainder 1

22/2 = 11 remainder 0

A Simpler Method
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• 22/2 = 11 remainder 0
• 11/2 =   5 remainder 1
• 5/2 =   2 remainder 1
• 2/2 =   1 remainder 0
• 1/2 =   0 remainder 1
• Number is 1 0 1 1 0 1 0 1

• Suppose you want to represent positive integers in binary. 
• Indicate how many bits are required to represent each of the 

following sets of integers:
– (1) The integers from 0 to 127 inclusive
– (2) The integers from 0 to 2,048 inclusive
– (3) The integers from 0 to 32,500 inclusive
– (4) The integers from 0 to 1 500 345 inclusive

And Now Try Some Problems
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– (4) The integers from 0 to 1,500,345 inclusive
• Indicate how large a value can be represented by each of the binary 

quantities: A (1) 4-bit, (2) 12-bit, and (3) 24-bit quantity.
• Convert each of the following binary digits into decimal. Assume 

these quantities represent unsigned integers.
– (1) 1010;  (2) 10010; (3) 0111110; (4) 10000000; (5) 0111111

• Convert each of the following decimal numbers into binary.
– (1) 6; (2) 13; (3) 111; (4) 147; (5) 511

• In general a number system can have any base b

• the digit used are 0, 1, … , b-1

• The weight of ith place is bi

• The conversion formula from base b into decimal number is

Base ‘b’ number

for i = 0 to n 1−= 1ni
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• Commonly used base are 2, 3, 8, 10, 16, ...

for i = 0 to n – 1

for an n digit quantity
∑
=0i

i
i xb

Bases 2, 8, and 16 are related

Binary Decimal Octal Hexadecimal
0000 00 00 0 
0001 01 01 1 
0010 02 02 2 
0011 03 03 3 
0100 04 04 4 
0101 05 05 5 
0110 06 06 6 
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0111 07 07 7 
1000 08 10 8 
1001 09 11 9 
1010 10 12 A 
1011 11 13 B 
1100 12 14 C 
1101 13 15 D 
1110 14 16 E 
1111 15 17 F 

 

• From binary to octal
– make groups of 3 bits from right to left

01 110 1102 ⇒ 1668
• From octal to binary

– make each digit as 3 bits sequence

2768 ⇒ 010 111 1102

Conversion
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8 2
• From binary to hexadecimal

– make groups of 4 bits from right to left

0111 01102 ⇒ 7616
• From hexadecimal to binary

– make each digit as 4 bits sequence

3716 ⇒ 0011 01112

• Positive numbers are well understood

• An n-bit number represents numbers from 0 to 2n-1

• n+m bits can be used to represent n-bit integer and m-bit fraction of 
a number

• However negative numbers cause another problem

• In all solutions one bit is needed to represent the sign + or -

Signed numbers
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• In all solutions, one bit is needed to represent the sign, + or -

• MSB can be used for that purpose, i.e., represent sign 

• Remaining bits can be interpreted differently

– They can represent magnitude as a positive number

– They can be complemented (represent 0 by 1 and 1 by 0)

– Or manipulate in some other way



Example
Consider the bit string 1010:
• Sign and Magnitude

– 1 010
-ve    2

– So it represents -2
• 1’s Complement

– 1 010 1 101
-ve 5
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ve    5
– So it represents -5

• 2’s Complement
– 1 010 1 101 + 1

-ve    6
– So it represents -6

• Sign and Magnitude
– Out of n bits, one is reserved for sign
– Remaining bits represent the value of number as positive

– It is equivalent of representing it as
• 1’s Complement

– Convert the magnitude of number as a binary string

Interpretation

∑
−

=
−−

2

0
1 2)21(

n

i
i

i
n xx
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Convert the magnitude of number as a binary string
– Then complement every bit (replace 1 by 0 and 0 by 1)
– This is equivalent of having the weight of MSB as -(2n-1-1)

• 2’s Complement
– Convert the magnitude of number as a binary string
– Complement every bit (replace 1 by 0 and 0 by 1) and add 1
– This is equivalent of having the weight of MSB as -2n-1

Sign Magnitude, 1’s, and 2’s complement 

Binary Sign
Magnitude

1's
Complement

2's
Complement

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
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0110 6 6 6
0111 7 7 7
1000 -0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 -0 -1

• We use 2’s complement as it makes add/sub)simple
• n-bits uses only n-1 bits to store the value
• Largest positive value is 2n-1-1
• Largest negative value is -2n-1

• For n=4, these values are from  +       and -
• For n=8, these values are from + and -

Maximum and Minimum values in n-bits
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For n 8, these values are from        and 
• If we need larger or smaller values to be stored, we have 

problem -- leads to overflow and underflow

• For MULT/DIV, sign and magnitude is better
– But we cannot keep switching

• To change sign of a number
• In Sign and Magnitude

– Just complement the sign
• 1’s Complement

– Complement all bits
• 2’s Complement

Negation
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2 s Complement
– Complement all bits and add 1

• Adding 1 is expensive operation (Example: Add 1 to 0111)
• Alternate 2’s complement method

– Scan the string from right
– Retain all bits up to the first 1
– Then complement the remaining bits

Example:
6 = 0110
-6 = 1010

Negation Examples

• Negate the following 4-bit 2’s Complement Binary 
Values:

0011

1100+1

1111

0000+1

0111

1000+1

1010

0101+1
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• What is the negation of 1000 in 4-bit 2’s 
complement?

1100+1
-> 1101

0000+1
-> 0001

1000+1
-> 1001

0101+1
-> 0110



• Convert a negative decimal number to binary in 2’s complement

• Method 1:

– Convert the magnitude to an n-bit string

– Negate the number

– Example: -5     Magnitude in binary:   0101          Negation: 0011

Converting negative number to Binary
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• Method 2: 

– The magnitude of number must be less than or equal to 2n-1

– Add 2n to the number

– Convert this number as an n-bit unsigned integer

– Example: -4 + (16) = 12 (decimal) = 1100 (binary)

-7 + (16) =  9 (decimal) = 1001 (binary)

• ADD and SUB are fundamental
• Adding one digit to another gives result (R) and carry (C) bit
• Subtracting a digit from another gives result (R) and borrow (B) 
• Examples of adding/subtracting two digits

Computer Arithmetic for one bit

X 0 0 1 1 X 0 0 1 1

Y +0 +1 +0 +1 Y -0 -1 -0 -1
R 0 1 1 0 R 0 1 1 0
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• Add/sub of two digits with carry/borrow also gives two digits
• That is adding/subtracting two digits with carry/borrow

C 0 0 0 1 B 0 1 0 0

C 1 1 1 1 B 1 1 1 1
X 0 0 1 1 X 0 0 1 1

Y +0 +1 +0 +1 Y -0 -1 -0 -1

R 1 0 0 1 R 1 0 0 1

C 0 1 1 1 B 1 1 0 1

Previous

Current

• Follow rules of decimal arithmetic

• Add carry to/sub borrow from the next digit

• In 2’s complement, if we simply add or subtract without regard to sign, 
we get correct result if there is no overflow/underflow

• Overflow/Underflow occurs when the carry into and the carry out of the 
sign bit position are different.

• Examples

ADD/SUB with more than one bit
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Examples

C/B 00010 01000 11010 10000

X 0101 0101 0101 1001 0010 1011 0101 1011

Y +0001 +1011 +0100 +1010 -0101 -1001 -1101 -0100

Res 0110 1001 1101 1000

Corr Corr Over Under Corr Corr Over Under

• Understand the examples again

• Overflow 

– When two positive numbers added together or a negative number 
subtracted from a positive number yields negative

• Underflow 

– When two negative numbers added together or a positive number 
subtracted from a negative number yields positive

ADD/SUB revisited
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subtracted from a negative number yields positive

C/B 00010 11110 01000 10000 11010 00000 10000 01000

X 0101 0101 0101 1001 0010 1011 0101 1011

Y +0001 +1011 +0100 +1010 -0101 -1001 -1101 -0100

Res 0110 0000 1001 0011 1101 0010 1000 0111

Corr Corr Over Under Corr Corr Over Under

• Design a 1-bit circuit with proper “glue logic” to use it for n-bits
– It is called a bit slice
– The basic idea of bit slicing is to design a 1-bit circuit and then piece 

together n of these to get an n-bit component

• Example:
• A half-adder adds two 1-bit inputs

Using 1-bit building blocks to make n-bit circuit
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• Two half adders can be used to add 3 bits
• A 3-bit adder is a full adder
• A full adder can be a bit slice 

to construct an n-bit adder

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

B

C S

A

Half Adder

• Two half adders can be used to add 3 bits
• n-bit adder can be built by full adders
• n can be arbitrary large

Full adder and multi-bit ripple-carry adder

BA

Half Adder

4-bit ripple-carry adder

5454

B

C S

Cout

Sum

A
B

C

Full
Adder


