Introduction

- Rapidly changing field:
- vacuum tube -> transistor -> IC -> VLSI
- memory capacity and processor speed is doubling every 1.5 years:
- Things you'll be learning:
- Foundation of computing, design methodologies, issues in design
- how to analyze their performance (or how not to!)
- Why learn this stuff?
- You want to design state-of-art system
- you want to call yourself a "computer scientist or engineer"
- you want to build software people use (need performance)
- you need to make a decision or offer "expert" advice

What is a computing?

- In 1960, "computer" was still understood to be a person - A person who could compute
- By contrast, a recent dictionary begins the definition as - A "computer" is "An electronic machine..."
- But computing has had many abstraction

We would learn about some of them today

Consider An Example: Example 1

- Let us evaluate an expression
$-A=B+C+D+E * F$
- It can also be written as
$-A=(B+C)+D+E^{*} F$
$-A=(B+C+D)+E^{\star} F$
$-A=(B+C+D)+\left(E^{*} F\right)$
$-A=B+(C+D)+E *$
- But are these correct?
- $A=(B+C+D+E) * F$
$-A=B+C+\left(D+E^{*} F\right)$
- Depends on what are the rules for evaluating expressions
- What are we computing?
- What is the model?

What is A Computing Abstraction?

- Consider computation a simple expression - $A=B^{*} C$
- What do we need to do to compute?
- Need storage for B
- Need storage for C
- Multiply
- Need storage for A
- How would you do it on your calculator?
- What if you do not have multiplier?
- But you have black boxes that compute, add, log/alog
$-\log A=\log B+\log C$
- It is a functional transformation
- How do we achieve the computation? Put the blocks together

A Possible Solution: Example 2

- How many operations?
- How many multiply? 2
- How many adds/subs? 3
- How many storage?
- How much time?
- Is this the best we can do?
- For multiplication
- Probably we can argue
- What about adds/subs?

- This is not very efficient

- Another factorization does not change number of operations

Consider One More Example: Example 3

- Consider the computation $\quad Y=k_{3}{ }^{*} X^{3}+\mathrm{k}_{2}{ }^{*} \mathrm{X}^{2}+\mathrm{k}_{1}{ }^{*} \mathrm{X}+\mathrm{k}_{0}$ - No constraints on values
- How many operations?
- How many multiply?
- How many adds/subs?
- How many storage?
- Is this the best we can do?
- How do we achieve efficiency is computation?

A Possible Solution: Example 3

- How many operations?

- How many multiply? 6, but one can be saved easily
- How many adds/subs? 3
- How many storage?
- How much time?

Another Way to Solution: Example 3

- We can view the computation differently

- Why this iuin.
- Provides a building block for computation
- But has each block big, 4 inputs, 2 outputs

Yet Another Way to Solution: Example 3

- We can look at the expression differently

- How many operations?
- Why this form?
- Provides a way to optimize and provides a building block

Computing with a designed Machine

- Consider computation in example 1 (An user may like to directly say this as is) - $A=B^{*} C$
- A given machine has facility to load variables and perform arithmetic and complex functions (who designed it?)
- So how do we compute?
- Here is a conceptual program
- Load B, mem1
- Load C, mem2
- Multiply mem1, mem2, mem3
- Store A, mem3
- On your simple calculator
- Key in value of B
- Press multiply
- Key in value of C
- Press = and Read A out

Program Example 2

- Required computation is $\quad Y=X^{3}-X^{2}+X-1$
- A complex program may look like
$-X=$ value
$-Y=X^{3}-X^{2}+X-1$
- A simple program may look like
- Load X, mem1
- Multiply mem1, mem1, mem2
- Multiple mem1, mem2, mem3
- Sub mem3, mem2, mem4
- Add mem4, mem1, mem5
- Load \#1, mem6
- Sub mem5, mem6, mem7
- Store Y, mem7
- Do we need all these memory locations?

Now Consider Our Complex Example - 3

- Required computation is $Y=k_{3}{ }^{*} X^{3}+k_{2}{ }^{*} X^{2}+k_{1}{ }^{*} X+k_{0}$
- How do we approach this
- We need some structure to store variables
- An array structure $k[i], i=0,1,2,3, \ldots$
- A variable name X
- Store powers of X, i.e., X^{i} in xpower[i], $i=0,1,2,3, \ldots$
- A result location Y
$-X$ is given by user
- K[i] is filled in by user
- Y is initially zero
- Partial Y computation is, $Y=k[0]$
- Also, xpower[0] = 1
- At each step $i=1,2,3, \ldots$, we have 3 inputs and 2 outputs
- we take xpower[i-1], partial result Y , and $\mathrm{k}[\mathrm{i}]$
- And compute xpower[i] and a new partial result Y

Now Program Example - 3 Using Alternate

Differences Between the two Programs

- First approaches computes a 3-inputs, 2-outputs function
- The second one uses a 3 -input, 1 -output function
- Mathematically that is how we prefer to write functions
- First method can be used for successive addition of term
- The second method requires us to know how many terms

Computing Functions: Difference Engine

- Consider the computation $\mathrm{Y}=\mathrm{X}^{3}-\mathrm{X}^{2}+\mathrm{X}-1$
- Consider the table
- What is going on each row
- Can you name each row?
- Can you tell how an entry in a row is computed?

19

Difference Engine Abstraction

- Suppose you want to calculate $y=\operatorname{Sin}(x)$
- Need a Sin calculator
- Looks cheap on your calculator, it is expensive computation
- How would you go about it?
- Consider a Taylor series expansion
$-y=\operatorname{Sin}(x)=x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+\ldots \ldots$
- Based on computing differences, a finite n-th order polynomial can be differentiated \boldsymbol{n} times, which can be represented by a difference
- What degree polynomial is sufficient?
- Depends on accuracy needed (we will visit that many times)
- Let us consider only two terms:
$-y=\operatorname{Sin}(x)=x-x^{3 / 3!}$

Calculating using Difference Engine

- To compute value of $\sin (x)$ at $x(0), x(1), x(2), x(3), x(4), x(5)$, such that difference in two consecutive values of x is small
$-\Delta x=x(i+1)-x(i)$
$-y(x(i))=\sin (x(i))=x(i)-x(i)^{3 / 3}$!
- For simplicity, we will drop () and denote the corresponding values of y also as $\mathrm{y} 0, \mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3, \ldots .$.
- We can calculate $y 0, y 1, y 2$, and $y 3$ by hand and also call them $\Delta^{0} y 0$, $\Delta^{0} \mathrm{y} 1, \Delta^{0} \mathrm{y} 2$, and $\Delta^{0} \mathrm{y} 3$, respectively
- Why are we doing it?
- That forms the basis of difference engine abstraction

Difference Engine (cond.)

- If we differentiate the function, forth differentiation will yield a 0
- What about the third differentiation?
- A constant (value is -1 in this case)
- And others can be calculated as well
- First order difference can be written as
$-\Delta^{1} \mathrm{y} 0=\mathrm{y} 1-\mathrm{y} 0 ; \Delta^{1} \mathrm{y} 1=\mathrm{y} 2-\mathrm{y} 1 ; \Delta^{1} \mathrm{y} 2=\mathrm{y} 3-\mathrm{y} 2$
- Second order difference can be written as
$-\Delta^{2} \mathrm{y} 0=\Delta^{1} \mathrm{y} 1-\Delta^{1} \mathrm{y} 0=\mathrm{y} 2-2 \mathrm{y} 1+\mathrm{y} 0$
$-\Delta^{2} \mathrm{y} 1=\Delta^{1} \mathrm{y} 2-\Delta^{1} \mathrm{y} 1=\mathrm{y} 3-2 \mathrm{y} 2+\mathrm{y} 1$
- Third order difference can be written as $-\Delta^{3} y 0=\Delta^{2} y 1-\Delta^{2} y 0=y 3-3 y 2+3 y 1-y 0$
- And the forth order difference is $\Delta^{4} y 0=0$
- Suppose we know $\Delta^{3} y 0, \Delta^{2} y 0, \Delta^{1} y 0$, and $\Delta^{0} y 0$
- Using this we can recursively compute $\Delta^{3} \mathrm{y} 1, \Delta^{2} \mathrm{y} 1$, and $\Delta^{1} \mathrm{y} 1$, and $\Delta^{0} \mathrm{y} 1$
- And then all y2 and y 3 , and $\mathrm{y} 4 . \ldots \ldots .$.

Difference Engine Organization

Decimal System

- We are all familiar with decimal numbers
- Consider a number 2375
- What digits representing thousand, hundred, ten and one's place
- How did you get it?
- Give me an algorithm
- Divide by 1000, result is thousand place value
- Subtract 1000*thousand place value
- Divide by 100 , result is hundred place value
- Subtract 100*hundred place value
- Divide by 10, result is ten place value
- Subtract 10 ten place value
- Remainder is one place value
- What is good about this algorithm
- What is bad about it?

An Easier Algorithm

- Divide by 10
- Remainder is one place value
- Divide the result by $\mathbf{1 0}$
- Remainder is ten place value
- Divide the result by 10
- Remainder is hundred place value
- Divide the result by $\mathbf{1 0}$
- Remainder is thousand place value
- Any time result is zero, that means no more value
- Division is always by 10
- We always need result and remainder

Information Representation

- Information theory: discusses how to deal with information
- We only deal with some aspects of it
- Virtually all computers now store information in binary form
- A binary number system has two digits, 0 and 1
- Combination of binary digits represent various kind of information
- Examples
- 01001011
- It can be interpreted as an integer value, a character code, a floating point number...
- Non binary numbers are also possible
- How do we represent negative numbers? i.e., which bit patterns will represent which numbers?

Historical Perspective

- 1642 Pascal: Mechanical Computer
- 1671: Gottfried Leibniz ADD/SUB/MUL/DIV
- 1801: Automatic Control of Weaving Process
- 1827 The Difference Engine by Charles Babbage
- 1936: Zuse Z1: electromechanical computers
- 1941: Zuse Z2
- 1943: Zuse Z3
- 1944: Aiken: Ark 1 at Harvard
- 1942-45: ABC at lowa State (Atanasoff-Berry Computer)
- 1946: ENIAC: Eckert and Mauchley: Vacuum Tube
- 1945 EDVAC by von-Neumann machine, father of modern computing

Why Binary?

- Easy to represen
- Off and On
- Open and close switch
- Head and tail on a coin
- Polarity of magnetization
- 0 and nonzero voltage levels
- How to represent information in binary?
- Say we want to represent positive number 0 and 1

0 is 0 and 1 is 1

- say we want to represent red and green colors
- 0 is red and 1 is green (or vice versa)
- Say we want to represent fall and spring semesters
- 0 is fall and 1 is spring (or vice versa)

More Complicated Examples

- Numbers 0 to 7
- We use combination of digits
- 1 digits gives us two combination
- 2 will yield four
- 3 will yield 8
- Need three bits (binary digits)
- What if we want to represent 16 alphabets - Need four bits
- What if we want to represents numbers from 11 to 25 ?
- Homework Problem
- For each part below devise a scheme to represent, in binary, each set of symbols
- (A) Numbers: 0, 1, 2, 3, 4, 5, 6, 7
- (B) Alphabets: A, B, C, D, E, F
- (C) Integers from 21 to 36

Bits and Combinations		
\# of Bits	\# of quantities	-What happens in other number 1
2	2	systems?
2	4	•In base b, n digits give b
3	8	combinations
4	16	•Base 10: decimal
..	..	•Base 8: Octal
..	..	
..	..	
n	2^{n}	

Representation of Positive Numbers

- Positional value
- Binary digits are numbered $\quad \mathrm{XXXXXXXXX}$
- Right most digit is 0 . 06543210
- Next to that is a 1

76543210

- And so on up to $\mathrm{n}-1$ in an n -bit representation
- Decimal point is implied at the right of bit 0
- Each bit is assigned a weight
- The weight of $\mathrm{i}^{\text {th }}$ bit is 2^{i}

Using this notation

- The value of an n bit sequence is
$-2^{n-1} x_{n-1}+2^{n-2} x_{n-2}+\ldots .+2^{1} x_{1}+2^{0} x_{0}$
$-=\sum_{i=0}^{i=n-1} 2^{i} x_{i}$

Bit \# Weight

Some Examples

- Convert 0101 into decimal

And What About the Reverse Operation?

- First see the largest weight of a binary positional digit contained in the number
- Position: 3210
- Weight: 8421
- Digits: 0101

Decimal value: 8 * $0+4$ * $1+2$ * $0+1$ * $1=5$

- Convert 10110101 into decimal
- Position: $\quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0$
- Weight: $\quad 128643216848221$
- Digits: $1 \begin{array}{llllllll} & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1\end{array}$
- Decimal value: $128^{*} 1+64^{*} 0+32^{*} 1+16^{*} 1+8^{*} 0+4^{*} 1+2^{*} 0+1 * 1=181$
- Now try 10000000
- And try 01111111

A Simpler Method

- Convert decimal number 181 into binary
- Start dividing by 2
- Successive remainders are digits from right
- 181/2 = 90 remainder 1
- $90 / 2=45$ remainder 0
- $45 / 2=22$ remainder 1
- $22 / 2=11$ remainder 0
- $11 / 2=5$ remainder 1
- $5 / 2=2$ remainder 1
- $2 / 2=1$ remainder 0
$1 / 2=0$ remainder 1
- Number is 10110101

And Now Try Some Problems

- Suppose you want to represent positive integers in binary.
- Indicate how many bits are required to represent each of the following sets of integers:
- (1) The integers from 0 to 127 inclusive
- (2) The integers from 0 to 2,048 inclusive
- (3) The integers from 0 to 32,500 inclusive
- (4) The integers from 0 to 1,500,345 inclusive
- Indicate how large a value can be represented by each of the binary quantities: A (1) 4-bit, (2) 12-bit, and (3) 24-bit quantity
- Convert each of the following binary digits into decimal. Assume these quantities represent unsigned integers.
- (1) 1010; (2) 10010; (3) 0111110; (4) 10000000; (5) 0111111
- Convert each of the following decimal numbers into binary
- (1) 6; (2) 13; (3) 111; (4) 147; (5) 511

Base 'b' number

- In general a number system can have any base b
- the digit used are $\mathbf{0 , 1}, \ldots, b-1$
- The weight of $i^{\text {th }}$ place is b^{i}
- The conversion formula from base \mathbf{b} into decimal number is

$$
\sum_{i=0}^{i=n-1} b^{i} x_{i}
$$

$$
\text { for } \mathrm{i}=0 \text { to } \mathrm{n}-1
$$

for an n digit quantity

- Commonly used base are $2,3,8,10,16, \ldots$

Bases 2, 8, and 16 are related

Binary	Decimal	Octal	Hexadecimal
0000	00	00	0
0001	01	01	1
0010	02	02	2
0011	03	03	3
0100	04	04	4
0101	05	05	5
0110	06	06	6
0111	07	07	7
1000	08	10	8
1001	09	11	9
1010	10	12	A
1011	11	13	B
1100	12	14	C
1101	13	15	D
1110	14	16	E
1111	15	17	F

Conversion

- From binary to octa
- make groups of 3 bits from right to left

$$
01110110_{2} \Rightarrow 166_{8}
$$

- From octal to binary
- make each digit as $\mathbf{3}$ bits sequence $276_{8} \Rightarrow 010111110_{2}$
- From binary to hexadecimal
- make groups of 4 bits from right to left

$$
01110110_{2} \Rightarrow 76_{16}
$$

- From hexadecimal to binary
- make each digit as 4 bits sequence

$$
37_{16} \Rightarrow 00110111_{2}
$$

Signed numbers

- Positive numbers are well understood
- An \mathbf{n}-bit number represents numbers from 0 to $\mathbf{2 n}^{\mathbf{n}} \mathbf{- 1}$
- $n+m$ bits can be used to represent n-bit integer and m-bit fraction of a number
- However negative numbers cause another problem
- In all solutions, one bit is needed to represent the sign, + or -
- MSB can be used for that purpose, i.e., represent sign
- Remaining bits can be interpreted differently
- They can represent magnitude as a positive number
- They can be complemented (represent 0 by 1 and 1 by 0)
- Or manipulate in some other way

Example	
Consider the bit string 1010: - Sign and Magnitude $-\frac{1}{-v e} \quad \frac{010}{2}$ - So it represents -2 - 1's Complement $-1 \underline{1010} \rightarrow \underset{-v e}{101} \frac{101}{5}$ - So it represents -5 - 2's Complement $\begin{aligned} & -\underset{\text {-ve }}{1010} \rightarrow \underset{\sim}{1} \frac{101}{6}+1 \\ & - \text { So it represents }-6 \end{aligned}$	
	43

Interpretation

- Sign and Magnitude
- Out of n bits, one is reserved for sign
- Remaining bits represent the value of number as positive
- It is equivalent of representing it as $\quad\left(1-2 x_{n-1}\right) \sum_{i=0}^{n-2} 2^{i} x_{i}$
- 1's Complement
- Convert the magnitude of number as a binary string
- Then complement every bit (replace 1 by 0 and 0 by 1)
- This is equivalent of having the weight of MSB as -($\left.2^{n-1}-1\right)$
- 2's Complement
- Convert the magnitude of number as a binary string
- Complement every bit (replace 1 by 0 and 0 by 1) and add 1
- This is equivalent of having the weight of MSB as -2^{n-1}

Sign Magnitude, 1's, and 2's complement

Binary	Sign Magnitude	$1 ' s$ Complement	2's Complement
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Maximum and Minimum values in n-bits

- We use 2's complement as it makes add/sub)simple
- n-bits uses only n-1 bits to store the value
- Largest positive value is $2^{n-1}-1$
- Largest negative value is $\mathbf{- 2}^{\mathrm{n}-1}$
- For $n=4$, these values are from + and .
- For $n=8$, these values are from $+\quad$ and -
- If we need larger or smaller values to be stored, we have problem -- leads to overflow and underflow
- For MULT/DIV, sign and magnitude is better - But we cannot keep switching

Negation

- To change sign of a number
- In Sign and Magnitude
- Just complement the sign
- 1's Complement
- Complement all bits
- 2's Complement
- Complement all bits and add 1
- Adding 1 is expensive operation (Example: Add 1 to 0111)
- Alternate 2's complement method
- Scan the string from right
- Retain all bits up to the first 1
- Then complement the remaining bits

Example:

- Retain all bits up to the first 1 $6=01 \underline{10}$ $-6=1010$

Negation Examples

- Negate the following 4-bit 2's Complement Binary Values:

0011	1111	0111	1010
$1100+1$	$0000+1$	$1000+1$	$0101+1$
$\rightarrow>1101$	$\rightarrow 0001$	$\rightarrow 1001$	$\rightarrow 0110$

- What is the negation of 1000 in 4-bit 2's complement?

Converting negative number to Binary

- Convert a negative decimal number to binary in 2's complement
- Method 1:
- Convert the magnitude to an n-bit string
- Negate the number
- Example: -5 Magnitude in binary: 0101 Negation: 0011
- Method 2:
- The magnitude of number must be less than or equal to $\mathbf{2}^{\mathbf{n - 1}}$
- Add 2^{n} to the number
- Convert this number as an \mathbf{n}-bit unsigned integer
- Example: $-4+(16)=12$ (decimal) $=1100$ (binary)

$$
-7+(16)=9 \text { (decimal) }=1001 \text { (binary) }
$$

Computer Arithmetic for one bit

- ADD and SUB are fundamental
- Adding one digit to another gives result (R) and carry (C) bit
- Subtracting a digit from another gives result (R) and borrow (B)
- Examples of adding/subtracting two digits

x	0	0	1	1	x	0	0	1	1
Y	+0	+1	+0	+1	Y	-0	-1	-0	-1
R	0	1	1	0	R	0	1	1	0
C	0	0	0	1	B	0	1	0	0

- Add/sub of two digits with carry/borrow also gives two digits
- That is adding/subtracting two digits with carry/borrow

| Previous | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\longrightarrow \mathbf{C}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | \mathbf{B} | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| \mathbf{X} | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | \mathbf{X} | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| \mathbf{Y} | $\mathbf{+ 0}$ | $\mathbf{+ 1}$ | $\mathbf{+ 0}$ | $\mathbf{+ 1}$ | \mathbf{Y} | $\mathbf{- 0}$ | $\mathbf{- 1}$ | $\mathbf{- 0}$ | $\mathbf{- 1}$ |
| \mathbf{R} | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | \mathbf{R} | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ |
| Current | | | | | | | | | |
| $\longrightarrow \mathbf{C}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | \mathbf{B} | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ |

ADDISUB with more than one bit

- Follow rules of decimal arithmetic
- Add carry to/sub borrow from the next digit
- In 2's complement, if we simply add or subtract without regard to sign, we get correct result if there is no overflow/underflow
- Overflow/Underflow occurs when the carry into and the carry out of the sign bit position are different.
- Examples

C/B	00010		01000		11010		10000	
X	0101	0101	0101	1001	0010	1011	0101	1011
Y	+0001	+1011	+0100	+1010	-0101	-1001	-1101	-0100
Res	0110		1001		1101		1000	
	Corr	Corr	Over	Under	Corr	Corr	Over	Under

ADD/SUB revisited

- Understand the examples again
- Overflow
- When two positive numbers added together or a negative number subtracted from a positive number yields negative
- Underflow
- When two negative numbers added together or a positive number subtracted from a negative number yields positive

C/B	00010	11110	01000	10000	11010	00000	10000	01000
X	0101	0101	0101	1001	0010	1011	0101	1011
Y	+0001	+1011	+0100	+1010	-0101	-1001	-1101	-0100
Res	0110	0000	1001	0011	1101	0010	1000	0111
	Corr	Corr	Over	Under	Corr	Corr	Over	Under

Full adder and multi-bit ripple-carry adder

- Two half adders can be used to add 3 bits
- n -bit adder can be built by full adders
- n can be arbitrary large

