CPR E 381x/382x (Lab07b
Tractor Meter
1. Objectives

In the first sections of this lab, we learn more about the basic digital input/output devices (switches and LEDs) on the PowerBox. We will often use this I/O in the lab to represent user or environment input, such as from buttons, dials, etc. Memory-mapped I/O is also defined. The rest of the lab describes an embedded programming exercise in the application domain of "smart farming." You will need to write a C program.
2. Prelab

Read all of the lab sections, there is a lot of info, which will take awhile to read through if you wait until lab time. Begin to design your software, even if only pseudo-code.
3. Setup

As you did in previous labs, make sure you create the folder in your home directory U:\CPRE381\Labw07b to save all your work from this lab.

4. I/O on the PowerBox
In this section, you will learn a few more details about the PowerBox digital I/O components. To begin, here is some helpful terminology:
· Bus - A collection of wires sharing a common purpose

· Latch - A flip-flop used to keep data (latches on a clock signal)

· Buffer – Stores and transfers data, typically having outputs in three possible states (low, high, or high impedance (open circuit))

In order to read/write data to the outside world, the PowerPC processor sends signals on a collection of wires known as a bus. The three main bus types for any computer system are:

· Address - Who is the processor talking to (RAM, ROM, hard disk, temperature sensor, etc.)?

· Data - What is being said (110.6 degrees, 0xFA, "Hello")?

· Control - Who is doing the talking (device, processor)?

Now, the PowerPC processor is not set up by default to interact with the real world. Thus, we need some components to help the processor interface with the real world. This introduction is primarily concerned with the digital input and output components of the PowerBox.

Memory-Mapped I/O
The PowerBox uses what is known as memory-mapped I/O. Essentially, memory-mapped I/O can be summarized as simply putting all devices and memory out in a large memory space. Thus, when you are using pointers to read and write to memory locations, you may be using different devices. For instance, memory address 0x2000 may point to a serial port, whereas 0x3000 may be in a block of ROM. For the PowerBox, there are two main externally mapped memory areas:

· 0x20000000 - RAM - 16 MB of memory

· 0x40000000 - Digital Input/Output

You will be writing the code for accessing the digital input/output. You will use constants defined in the file defines.h, shown partially below.

// Defines.h : Definition file for PowerBox

//
// Overall memory addresses for external I/O board

//
32 bit pointer

//

#define

ADDRESS_START_EXT_RAM

0x20000000

#define

ADDRESS_START_EXT_IO

0x40000000

///
// I/O ports

//
All I/O ports are 8 bit ports

#define IO_DIGITAL_INPUT_1

0x40000003

#define IO_DIGITAL_INPUT_2

0x40000007

#define IO_DIGITAL_INPUT_DIP_1

0x4000000B

#define IO_DIGITAL_INPUT_DIP_2

0x4000000F

#define IO_DIGITAL_INPUT_KEYPAD

0x40000013

#define IO_DIGITAL_OUTPUT_LED1

0x40000023

#define IO_DIGITAL_OUTPUT_LED2

0x40000027

#define IO_DIGITAL_OUTPUT_1

0x4000002B

#define IO_DIGITAL_OUTPUT_2

0x4000002F

#define IO_DIGITAL_OUTPUT_7SEG

0x40000033

#endif

Digital Input
To read information in from the external I/O board, the PowerPC processor does a read to a memory address in the 0x40000000 memory address space. The circuitry for the digital input circuit looks something like the following:

The outside world digital source may come into the PowerBox via either the DIP switch or the Digital Input channels as digital signals. The data itself is transmitted to the CPU via the data bus. However, the CPU uses the data bus for more than just reading digital input. Thus, a buffer chip is required that places information on the data bus only when it is requested by the CPU. When the CPU wishes to read information from one of the digital inputs, it signals the buffer chip to allow it to change the data bus. The chip changes the data bus and the CPU reads the data bus to get the value of the digital input.

The buffer chip serves a second purpose as well. On the data bus, there are several devices waiting to read/write to the bus. On the PowerBox, there are 10 different input/output ports. However, what happens if each of the devices tries to talk at once. Suppose one device drives a data pin with +5V and another device assigns it 0 V. Who wins? In this case, nobody. The system ends up having nonsense most of the time and does not work.

The solution is to place the outputs of devices that are NOT talking on the bus into a high impedance state (i.e., looks just like an open circuit). Such a device is effectively disconnected from the bus. By doing so, all of the devices can share the bus and take turns using it as specified by the CPU.

Digital Output
The digital output case is fairly similar with a small twist. Instead of waiting to change the data bus, the output circuits receive their values from the data bus. Since the data bus is used for many different purposes, will the data bus contain the desired output value? The answer is no. Therefore, we need to include a latch in the circuit as pictured below:

[image: image1.jpg]Digital Output

CPU Data Bus

A latch is essentially a flip-flop (or set of flip-flops). Most latches come in 4- or 8-bit blocks. The latch is used to store the value and keep writing out the same value until the CPU changes it. Think about the LED bargraph and the 7-segment displays. Although the program is updating the output once a second, the latch is what keeps the same value being displayed when the CPU is doing other things.

DIP Switch Input
The DIP switches on the PowerBox are connected in the following manner:

[image: image2.jpg]osvT

To Buffer

The resistors in the circuit are known as pull-down resistors. With the pull-down resistors, each switch value is forced to be either a +5V or a 0V due to the voltage drop across the resistor.

When the DIP switch is open, there is not a connection. There is no connection to +5 V and the line stays at ground (Logic 0). When the DIP switch is closed, current flows from Vcc (+5 V) to ground and the line rises to +5 V. Notice the connection to ground is key to forcing the line to appropriate values. The pull-down resistor prevents a direct connection from Vcc (+5 V) to ground.

LED Output
In order to power LEDs, there are two choices, acting as a source for the current or acting as a sink for the current. However, if you look at TTL logic sheets (see TI's website), you will notice that ratings are given for both current sourcing as well as current sinking. Typically, the chip is able to sink significantly more current than it is able to source. One must take special care when designing a circuit not to violate the maximum current constraints of the chip, otherwise you will burn out the chip.

In a current sink setup, the TTL chip varies between +5 V or 0 V. The LED receives +5 V. The TTL chip varies its output between +5 V and 0 V to either turn off or light the LED.

When the TTL chip outputs a +5 V, the voltage difference between the +5 V (Vcc) and the TTL chip is 0 (5 V - 5 V = 0). Hence, no current flows and the LED does not light.

If the TTL chip outputs 0 V, the voltage difference becomes 5 V (5 V - 0 V = 5 V). Hence, current flows and the LED lights correctly.

[image: image3.jpg]BYH

(oudOood
T

=

TTL Latch
TT T T T 17T

For the above scenario, notice that a resistor is included in the diagram as well. The resistor is known as a current-limiting resistor and is critical to the correct operation of the circuit. Without it, current would flow directly from +5 V into the TTL chip at a level far beyond what the chip can handle. Think of it this way, if you connect Vcc and ground (don't do it), what happens? Bad things of course, you have a short circuit. By placing a current-limiting resistor between Vcc and ground, the current is limited to an appropriate level. Remember, I (Current) = V (Voltage) / R (Resistance). How much current flows if you use a 270 Ohm resistor?

7-Segment Output
The 7-segment display operates in a similar fashion to the LED bargraph. However, the 7-segment display circuit uses a 7-segment decoder to translate from a 4-bit binary value (0000 to 1111) to a 7-segment representation of the respective hex digit (0 to F). The decoder takes 4 inputs and maps them onto 7 outputs (pins a-g). For the PowerBox, the 7-segment display includes a built-in resistor.

[image: image4.jpg]—e
—f

— 9

Decoder — d

Be ready to discuss the digital input/output ports with your TA as you proceed to use them in the rest of the lab.

5. Bitwise Operations in C

Read the following article on bitwise operations in C, available online or from a local copy. Its explanation is quick and to the point; you should find it helpful if your background is thin, or easy to skim through for a refresher. You will need to apply these operations in the program you write for this lab.

Another C coding technique you may want to review is string formatting, and the following page is a useful reference: online or from a local copy.

You will be using the sprintf function from the C standard I/O library. Look up the syntax of this function in the CodeWarrior C Reference (3.5 MB), under stdio.h.

Don’t forget to use descriptive variable naming practices in your coding, as discussed in lecture. Follow the naming conventions used in the example code, or use some variation, but be consistent. See also prefix table.

6. Precision Agriculture

Precision Farming (PF) uses technology to handle field differences so that farmers can treat fields in a local way. The goal of PF is, for example, higher profitability, environmental protection, food safety, and/or higher yields. PF helps the farmer understand and control the (local) processes in the field. The farmer uses collected information (yield maps, soil maps, multi-spectral satellite images, etc.), management decisions, and outputs (fertilizing, drainage, spraying, etc.) for different goals.

One example of technology application in PF is illustrated in vehicle networking for tractors. Interestingly, there is also work going on to develop autonomous vehicles for farming.

Browse the resource links on the tractor page, or try a search at google.com (or your favorite search engine) using “ISO 11783,” “precision agriculture,” or similar to get a feel for the systems. Obviously, we are not ag engineers or bioengineers, but electrical and computer engineers and computer scientists are developing the technology for embedded systems used in PF.

7. Tractor Meters

Write a C program that implements a tractor meter having the following specifications and behavior. Make a new project in Code Warrior, use the Cpre282x template with the c code option, not assembly.
The meter has three displays:

· Vehicle odometer display

· Plant counter display

· Plants per unit distance display

The vehicle odometer records distance traveled. The plant counter uses sensors during harvesting to keep track of the number of plants. Plants per unit distance is the ratio of number of plants to linear distance traveled.

By default, the output for these displays should be written to the LCD screen of the QTerm. Refer this code for implementing output to the QTerm LCD. You will use these statements among others.

#include "defines.h" // Memory addresses for digital I/O ports
#include "QTerm.h" // Output to QTerm LCD
The vehicle odometer is on top with left-padded zeros. The plant counter is the next line, also with left-padded zeros. The plant linear density is the third line without left-padded zeros. Example:

0000010.00 km
0005000 plants
 5.00 plants/m

The vehicle odometer starts at 0000000.00 when you execute your program and increments by 0.01 km. It cannot be reset, unless you restart your program. The density display is set at a particular rate based on user input, and is limited to one of several values. The plant counter display increments simultaneously with the vehicle odometer based on the density reading, and it can be reset to 0000000 by user input.

The meter uses the following inputs. Study this code to read the digital inputs from the DIP switches. You will re-use some of that code. You might find it helpful to draw a block diagram of the switches and label the corresponding bits with respective functions.

· Set plant density – bits 6 and 7 of DIP Switch 2
[7,6] = 0,0: density = 2.00 plants per meter (or yard)
[7,6] = 0,1: density = 3.50 plants per meter (or yard)
[7,6] = 1,0: density = 5.00 plants per meter (or yard)
[7,6] = 1,1: density = 6.50 plants per meter (or yard)

· Set distance unit – bit 0 of DIP Switch 1: If bit equals 1, use metric units of distance (kilometers for odometer and meters for density); if bit equals 0, use English units (miles for odometer and yards for density). You will need to look on the web or another resource to determine the appropriate conversion factors between units. (HINT: You may want to keep the internal value in your program as a certain type and simply convert for the output).

· Reset plant counter – bit 7 of DIP Switch 1: If bit equals 1, reset the counter to zero. Other displays are not affected.

· Print to PC – bits 0 and 1 of DIP Switch 2: If both bits equal 1, send the meter values to the PC HyperTerminal via the serial cable, in addition to the LCD QTerm. The following two files must be included in your project for HyperTerm Communications. The functions used are very similar to the LCD functions (i.e. PC_Init() instead of LCD_Init). The third file can just be opened to start HyperTerm with the necessary settings.
1. Serial_PC.c (save this and include the file)

2. Serial_PC.h (save this and include the file)

3. PowerPC.ht (just open this, no need to save)

Finally, how is the incrementing of the odometer controlled? Of course, in an actual tractor, a device is built in to measure distance traveled. In this lab, we will need to emulate or simulate the device to "imitate" its behavior; that is, your program will represent the functioning of one system or process by means of the functioning of another. Emulation usually is done in hardware; simulation, in software. Select one of the following options to design your program:

1. Simulation: Use a while(1) loop in your main program that continuously increments the distance by 0.01 km, delaying a short time to represent time taken to travel as well as to let the user observe the meter readings. For example, use msleep(2000) to delay 2000 milliseconds (2 seconds).

while(1)
{
\\ code to increment distance, process inputs, and update displays

msleep(2000);
}

2. Emulation: Use a DIP switch as an indicator that 0.01 km has passed. The user flips the switch at any time to represent this distance has been traveled.

For example, use bit 0 of DIP Switch 1. Your programming logic may use either of the techniques below. Note that your software logic may be similar to a finite-state machine sequence detector, reading a one-bit input, and incrementing in a particular state. If-else and If statements can be used to code the logic. (Hint: technique (a) logic can be drawn as 3-state Moore machine; and technique (b) as 2-state Mealy machine.)

(a) Increment distance if user sets the switch: If bit equals 1, add 0.01 km to the distance traveled.
e.g.,
If bit equals successively 0-1-0-0-1-1-1, program should add 0.01 km 2 times (i.e., each time the bit is set to 1 from 0).

OR
(b) Increment distance if user toggles the switch: If the bit value changes (i.e., 0 to 1, or 1 to 0), add 0.01 km to the distance traveled. Include comments in your program describing how your program handles the first value (i.e., when your program starts up).
e.g.,
If bit equals successively 0-1-0-0-1-1-1, program should add 0.01 km 3 times (i.e., each time the bit changes value).

NOTE: You may experience a phenomenon known as switch bouncing (i.e., one toggle of the DIP switch results in multiple alternating values of the bit, e.g., 0-1-0-1). If you are having problems with this, simply add the following line to your code in the main loop between readings of the switch:

msleep(250);

We will address debouncing in the next lab.
Also, you should give some thought to how you will test your program. For example, you may want to have a version of the code that implements only one of the tasks in the program. Get that working, and then incrementally add other tasks. Or you may have a version that implements the control logic only, and once you have verified the control flow of your program, you start adding the data processing or input/output statements. Or you might find a particular piece of the code to be difficult to write, and you could isolate that code and work on it separately. You have a number of alternatives to develop and test your program to make your job easier -- so that you simply do not try compiling everything at once and end up with a long list of syntax errors.

CPR E 381x/382x (Labw07b
Answer Sheet
Tractor Meter
Name____________________

Name____________________

· Lab Demonstration
· Counter works

· Odometer works

· Density display works

· Outputs to QTerm and PC
TA Initials: ​​​​​_______​​​​​​_____

DATE: _____________

