CPR E 381x/382x ( Lab09b
On-Chip Timer and Interrupts
1. Objectives

Microprocessor versus microcontroller?  What’s the difference?  On-chip input/output. We have been exploring different types of I/O subsystems and I/O operation. So far, we have used simple digital I/O such as switches and LEDs. I/O subsystems are programmed using interfaces that include data, status, and control registers, as well as other hardware. A common I/O device in embedded systems is an on-chip hardware timer, due to the time-driven nature of many tasks. In this lab, you will program the on-chip timer on the MPC555 microcontroller and learn about its interface. In addition, I/O subsystems typically operate in one of two modes, programmed (polling-based) I/O or interrupt-driven I/O. The programmer can choose whether to use polling or interrupts.  Interrupts are supported by an interrupt controller on-chip with the processor. An interrupt controller has its own set of registers that are used to program the unit. In this lab, you will also program the interrupt controller on the MPC555.

2. Prelab
Read all of the lab sections, there is a lot of info, which will take awhile to read through if you wait until lab time.
3. Setup

As you did in previous labs, make sure you create the folder in your home directory U:\CPRE381\Labw09b to save all your work from this lab. 

4. Investigating msleep
The msleep function is defined in PPC_Support.c. This file has been modified slightly from the original, including adding more comments. 

Copy these PPC_Support C and header files to a new project in CodeWarrior: PPC_Support.c, PPC_Support.h
Browse through the C code for msleep. You will see that it uses a special on-chip timer called the Periodic Interrupt Timer, or PIT. Notice that msleep works by polling a status flag. It does not use interrupts. We’ll look at the PIT more in a moment.

Write a short main program in C that calls msleep repeatedly. You’ve used msleep in several programs already. The parameter to msleep is the number of milliseconds of delay. Your main program should read in a value from DIPSwitch1, multiply it by 100, and assign that value as the parameter to msleep.  For example, if the switch value is 10 (decimal), or 00001010 (binary), then the parameter to msleep is 10*100 = 1000 ms, or a delay of 1 second. The main program is just an infinite loop that reads the switch and calls msleep.
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Compile and test your timer program.

Now, let’s look at the PIT more closely. 

Read Section 6.9 (the first page) of the introduction to the PIT. Notice Figure 6-7. It represents how the PIT works. Basically, a timer register (16-bit modulus counter) is loaded with an initial value from a count register. The timer register counts down if the timer is enabled. When it reaches zero, it sets a status flag and re-loads the timer with the initial count value. The time it takes to count down to zero (PIT period) depends on the initial value, which determines the number of counter periods, and on the counter clocking frequency (PIT frequency), which determines the duration of a counter period.

There are three important registers that form the programming interface to the PIT:

· PISCR, Periodic Interrupt Status and Control Register (0x002FC240), Section 6.13.4.8

· 16-bit register

· bit 0 is the timer enable bit (PTE): set to 1 to enable the timer

· bit 7 is the status flag (PS): test for 1 to detect timer at 0; set to 1 to clear the flag

· PITC, Periodic Interrupt Timer Count Register (0x002FC244), Section 6.13.4.9

· 32-bit register

· 16-bit initial count value

· PITR, Periodic Interrupt Timer Register (0x002FC248), Section 6.13.4.10

· 32-bit register

· 16-bit down-counter

· read-only

· The counter frequency is a division of the system clock frequency.

Study the msleep function, paying attention to the use of the PIT registers.
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Answer the following questions:

1. What is happening during the execution of the while loop in msleep_1ms?

2. What is the value of the PISCR register after the while loop in msleep_1ms (run your program and use the debugger)?

3. What is the initial count value in the PITC register in msleep_1ms (inspect msleep_1ms code)?

4. Solve the following equation for PIT_freq: 
PIT_period = (PITC + 1) / PIT_freq
Given PIT_period = 0.001 sec, and PITC = (your answer from question 3).

What is PIT_freq?

5. Run your timer program a few times to evaluate the accuracy of the timer. Should TICKS_PER_MS be adjusted to increase the timer accuracy? Explain. 

5. Setting Up Code Warrior for Interrupts

Exploring the Code
The Periodic Interrupt Timer (PIT) can be set up to provide an interrupt every x seconds.  In practice, you might use the PIT to periodically sample a data port or in an operating system to switch between tasks.  To begin, let's take a look at the code for setting up the interrupt.  Unzip the LabPIT.zip file to your U: drive and open the project. 

main ()
{
    InitInterrupt (0xFFFF); 

    while(1)
    {
    }

    return 0;
}
The main function calls the InitInterrupt function with an argument.  However, notice that the function is not a C function but is a function written in assembly code.  Open the Interrupt.asm file to find the InitInterrupt function.

Although the code is not very readable in terms of comments and what we currently know about the interrupt system, notice how the code uses the .EQU assembler directive.  Glance through the code quickly to get an initial impression about what's involved in using interrupts -- recall that we said interrupts are more complicated than polling, especially to set up -- but don't worry right now about understanding all of the details.  

A few things to note about InitInterrupt:

Interrupts are enabled at the processor by setting the EE (External interrupt Enable) bit.

      li      r0,0xA042       ; set certain MSR bits, where MSR= EE PR FP ME FE0 SE BE FE1 – IP IR DR - - RI LE






; thus EE=1, RI=1


andi.   r0,r0,0xFFFF    ; keep only the 16 low-order bits

      mtmsr   r0


; move value into MSR

 

Or this single instruction would work:
 


mtspr   EIE, r0

; writing anything to EIE sets EE=1, RI=1

Interrupts are enabled in the PIT timer itself by assigning an interrupt level to the PIT timer and setting the PIE (PIT Interrupt Enable) bit after initializing the count value in PITC.

    
sth     r3,A_PITC(r31) ; store PITValue to initialize timer (parameter passed using r3)

    
li      r0,0x0885      ; set certain PISCR bits, where PISCR= PIRQ (8 bits) PS - - - - PIE PITF PTE





     ; thus PIRQ=08, PS=1 (which clears PS), PIE=1, PITF=0, PTE=1





     ; so flag is cleared, interrupt is enabled, timer is enabled, and level is assigned


sth     r0,A_PISCR(r31)

The PIRQ field of the PISCR register denotes the level assigned to the PIT timer according to the following table of values for MPC555 interrupt levels:

	Interrupt Level Assignment during Initialization

	Interrupt Level
	Binary Value
	Hex Value

	0
	10000000
	80

	1
	01000000
	40

	2
	00100000
	20

	3
	00010000
	10

	4
	00001000
	08

	5
	00000100
	04

	6
	00000010
	02

	7
	00000001
	01


So level 4 corresponds to the value 0x08, which is the value assigned to the PIRQ field.  Thus the PIT timer is set up as a Level 4 interrupt.

Finally, the interrupt is enabled in the interrupt controller by setting the mask bit corresponding the interrupt level. Thus, when the device sends an interrupt signal to the interrupt controller, the mask register will let the signal through.

lhz
 r0, A_SIMASK(r31) 
; get the original value of the mask register

ori r0, r0, $0040
; set the level 4 bit in the register to enable ; interrupt level 4

; SIMASK=  M0 IM0 M1 IM1 M2 IM2 M3 IM3 M4 IM4 M5 IM5 M6 IM6 M7 IM7

; where IM4 is the mask bit for Internal Interrupt 4, so $0040 sets that ; bit

; OR in the value because we want to preserve the current state of the  ; interrupt mask

sth r0, A_SIMASK(r31)
; write the changed mask back out to the 

; interrupt controller

 

A few other things to note about the Interrupt.asm file:

The exception vector table entry for external interrupts, at 0xFFF00500, is initialized with a branch to the exception handler.

.section .abs.FFF00500

.org 0

IHdlr_Branch:


b
Start_IHdlr


End_IHdlr_Branch:

This code creates a section located at the absolute address 0xFFF00500 and puts the branch instruction there. Notice that Start_IHdlr is the label for the starting address of the exception handler in this file. When the processor sees an external interrupt request, it automatically starts executing at 0xFFF00500. Thus the branch instruction is executed and control transfers to the exception handler Start_IHdlr.

The interrupt vector table for the different interrupt levels is also initialized as a data section with the label InterruptTable. The names of the interrupt service routines denote their starting addresses, and thus the table is a list of addresses.

.data

InterruptTable:


.long InterruptHandlerIRQ0   ; 0


.long InterruptHandler0      ; 1   Level 0


.long InterruptHandlerIRQ1   ; 2


.long InterruptHandler1      ; 3   Level 1


.long InterruptHandlerIRQ2   ; 4


.long InterruptHandler2      ; 5   Level 2


.long InterruptHandlerIRQ3   ; 6


.long InterruptHandler3      ; 7   Level 3


.long InterruptHandlerIRQ4   ; 8


.long InterruptHandler4      ; 9   Level 4


.long InterruptHandlerIRQ5   ; 10


.long InterruptHandler5      ; 11  Level 5


.long InterruptHandlerIRQ6   ; 12


.long InterruptHandler6      ; 13  Level 6


.long InterruptHandlerIRQ7   ; 14


.long InterruptHandler7      ; 15  Level 7

So the starting address for internal interrupt level 4, corresponding to the function name InterruptHandler4, is at an offset of 9 words (36 bytes) from InterruptTable. Note that the function names are imported at the beginning of the file, so these addresses are derived from the actual C functions for the interrupt service routines.

How does the exception handler use the interrupt vector table to call the appropriate interrupt service routine? Refer to the Start_IHdlr code.

    ; r31 has the base address of the SIU registers

    ; the value in the vector register SIVEC is determined automatically by the interrupt controller

    lbz     r0,A_SIVEC(r31) ; r0 = value in the vector register in the interrupt controller

    andi.   r0,r0,0x003C    ; select the 4-bit field, which is used as an offset into the interrupt vector table

 

    li      r31,InterruptTable@l

    andi    r31,r31,0xFFFF

    addis   r31,r31,InterruptTable@h


    ; r31 now has the starting address of the interrupt vector table, i.e., InterruptTable

 

    add     r31,r31,r0
    ; add the offset to the starting address, i.e., InterruptTable+offset

    lwz     r0,0(r31) ; the resulting address in r31 points to an entry in the interrupt vector table, so read it

    mtspr LR,r0 
    ; the word read is the address of the interrupt service routine, move it into LR

    blrl        ; branch to the interrupt service routine, using branch to LR and link

 

The SIVEC register value denotes the highest-priority interrupt level currently pending according to the following table of values for MPC555 interrupt levels:

	Interrupt Vector Identification by Exception Handler

	Interrupt Source
	Priority
	Binary Value
	Hex Value

	0
	0 (highest)
	00000000
	00

	Level 0
	1
	00000100
	04

	1
	2
	00001000
	08

	Level 1
	3
	00001100
	0C

	2
	4
	00010000
	10

	Level 2
	5
	00010100
	14

	3
	6
	00011000
	18

	Level 3
	7
	00011100
	1C

	4
	8
	00100000
	20

	Level 4
	9
	00100100
	24

	5
	10
	00101000
	28

	Level 5
	11
	00101100
	2C

	6
	12
	00110000
	30

	Level 6
	13
	00110100
	34

	7
	14
	00111000
	38

	Level 7
	15 (lowest)
	00111100
	3C


So level 4 corresponds to the value 0x24, which equals decimal 36. Recall that this is the offset into InterruptTable to look up the starting address for internal interrupt level 4, corresponding to the function name InterruptHandler4. Thus the exception handler uses the SIVEC register to call the interrupt service routine.

Notice that now you have explored almost all of the code in the Interrupt.asm file.  The only code not reviewed is some code related to stack frames for the functions InitInterrupt and Start_IHdlr.

Something to note about the Interrupt_Hdlr.c file:

The interrupt service routines for each level are declared/defined as C functions in this file. Thus, you will find code for InterruptHandler4, which is the ISR for a level 4 internal interrupt.  If the PIT timer is assigned as level 4, then this ISR is called by the exception handler. The other ISRs are simply placeholders for now (although there is some arbitrary code placed in a few of them for debugging later in the lab). Global variables, such as gVal, keep track of data from one execution of the ISR to the next.

 

Replacing the Debugger Setup File
This is an important step, so follow it carefully. 

To execute and test this code, we will need to make a few changes to the CodeWarrior project.  Since we are working with interrupts, we will be using exceptions.  However, in order to use exceptions correctly, we need to place a branch instruction in the exception vector table.  Where is the exception table in memory?  Where is this relative to our code? 

Since the PowerPC processor uses 32-bit addresses, its address space ranges from 0x00000000 to 0xFFFFFFFF, or 232 bytes = 4 gigabytes (GB). However, this is a logical address space. The physical address space depends on how much memory is actually installed in the PowerBox; there are 16 megabytes (MB) of RAM (Random-Access Memory, or read/write memory). So only a fraction of the available address space is used by RAM. RAM is where user programs (code, data, stack, etc.) are placed. In addition, the system may require certain information to be placed in RAM as well, such as the exception vector table.

Currently, CodeWarrior configures the PowerBox so that the starting address for RAM is 0x20000000. With 16 MB = 224 bytes, the ending address is 0x20FFFFFF. 

However, for the MPC555, the exception table can be located at either 0x000xxxxx or 0xFFFxxxxx. Neither of the possible locations is in the RAM address range.

	0x00000000
	 

exception table at 0x000xxxxx

 

	 
	

	0x20000000
	RAM address space

	 
	

	 
	

	 
	

	 
	

	0x20FFFFFF
	

	 

 

 

 
	 

 

exception table at 0xFFFxxxxx

	0xFFFFFFFF
	


 

Thus, we need to change the starting address of RAM so that it includes one of the locations for the exception table.  Since 0x000xxxxx is physically in the Flash RAM inside the PowerBox, and we do not want to write to the flash memory, we need to use the higher address. This is an open region in the address space, that is, nothing has been mapped to addresses in that region, so it is available.  Remember to actually use the space and have the CPU read/write from/to it, there needs to be real memory associated with the address space.  That means that we need to map some of the physical RAM in the PowerBox system to correspond to this range of addresses.  Thus, we will re-map the starting address for RAM from 0x20000000 to 0xFF000000. 

	0x00000000
	 

 

 

	 
	

	0x20000000
	 

	 
	

	 
	

	 
	

	 
	

	0x20FFFFFF
	

	0xFF000000

 

 
	RAM address space

exception table at 0xFFFxxxxx

	0xFFFFFFFF
	


 

To do this, we will need to adjust the debugging configuration file. You may have noticed that CodeWarrior downloads a small file before downloading your code.  This file contains several operations to make sure that the external RAM is set up correctly.  In this case, we will use a file that sets up the address map to support the exception vector table.  Click on the Project and the Targets tab of the project. 


Click here to see a picture

The list here shows the possible targets/settings for the code.  Note that we could create multiple targets for our code.  For instance, we could have different settings for a prototype board and for the final board.  Double click on the Embedded PPC 555 C item. You will see a list of Target Settings Panels.

Scroll down until you find the Debugger panel.  Click on the EPPC Target Settings item.  


Click here to see a picture
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Change the setting for the FPU (floating-point unit) buffer address: FPU buffer address = 0xfff02000   

Also on the EPPC Target Settings menu, click the Browse button and select your Interrupt555.txt file in the project directory.  

Finally, go back to the Linker panel. Under EPPC Linker, change the settings in the settings box: Code Address = 0xfff04000.

Your user code will now be loaded into memory starting at address 0xFFF04000, which is in the RAM address range.

Now, start running the program.  If you are having problems, double-check the settings before asking your lab instructor for assistance.

6. Running the Interrupt Driven Program

Run the program. Observe that the 7-segment display is continuously incrementing. 

Next, using the debugger, step through the code into the InitInterrupt function.  Once you are in the function, open up the GPR Window (the register view).
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Answer the following questions:

6. Which register contains the value (0xFFFF) that is passed to the function as a parameter? (Hint: EABI)

7. What instructions in the assembly function use that register?

Press F5 and let the code run.  Watch what happens.  Notice that the 7-segment display is continually incrementing.  However, remember that your main program calls only InitInterrupt and then enters an infinite loop, calling/doing nothing else.  Each update to the display happens automatically in the ISR after the timer has reached zero and generated an interrupt request.

Stop the running code and inspect Interrupt_Hdlr.c.  

The interrupt handlers (interrupt service routines, ISRs) for all of the interrupt sources are provided in the Interrupt_Hdlr.c file.  An interrupt handler is invoked by the system when an interrupt occurs; it is not called by your program.  For instance, when a period of the PIT goes off, the timer is serviced -- its interrupt handler is executed -- without any awareness by the main.c code.  

Place a breakpoint in the InterruptHandler4 routine, for example, after the assignment that writes to the 7-segment display. Re-run the program and proceed through several breakpoints.

8. Does the debugger stop inside InterruptHandler4? Does the 7-segment display increment once each time the breakpoint is reached?

Make sure that you answer yes to question 8 before proceeding.

7. Modifying the Interrupt Service Routine and Investigating Interrupt Levels
In the current InterruptHandler4 ISR, the global variable gVal, and thus the display, increments whenever a timer interrupt occurs, i.e., whenever the timer goes off after counting down to zero. Modify the InterruptHandler4 code so that gVal (and the display) increments about 2 times per second.  You will test this by inspection, so it will be an approximation.  In other words, the display should increment once every 1/2 second (500 msec). To do this, you will use the 2nd global variable, gSlowVal, in Interrupt_Hdlr.c as a clock divider: increment gVal only when gSlowVal reaches a preset value.  In other words, gSlowVal should increment whenever a timer interrupt occurs, it will be compared to a preset value, and if it equals the preset value, then gVal will be incremented.  For example, if the preset value is 10, then gVal will increment every ten timer interrupts. The preset value will determine how fast gVal is updated and thus how fast the display counts. Rather than use a constant preset value in your code, use a DIPSwitch as an input to try different preset values.  This will save you from guessing/re-compiling/re-running the code.  Check your results over a 10-20 second period to verify the timing.
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Show your TA when you are finished.  

9. What preset value resulted in incrementing the display every 500 msec?

Finally, let’s investigate more closely how the interrupt request gets from the device to the processor. You may want to use a preset value of 1 so that gVal increments every PIT period.

In InitInterrupt, recall the code that enables the PIT interrupt:

li r0,0x0885
; set certain PISCR bits, where PISCR= PIRQ (8 bits) PS

; - - - - PIE PITF PTE





; thus PIRQ=08, PS=1 (which clears PS), PIE=1, PITF=0, PTE=1





; so flag is cleared, interrupt is enabled, timer is enabled,

;and level is assigned

sth r0,A_PISCR(r31)

Try changing the immediate value from 0x0885 to 0x0881. Make and run the program.

10. What is the difference between the original value and the modified value? Does the display increment? Why not?

You can also set a breakpoint in InterruptHandler4 to see if that code is called.

Return to the original value of 0x0885. Next, take a look at the code in InitInterrupt that enables the Level 4 interrupt inside the interrupt controller via the mask register:

Lhz r0, A_SIMASK(r31)
; get the original value of the mask register

ori r0, r0, $0040

; set the level 4 bit in the register to enable 
; interrupt level 4

      ; SIMASK=  M0 IM0 M1 IM1 M2 IM2 M3 IM3 M4 IM4 M5 IM5 M6 IM6 M7 IM7


; where IM4 is the mask bit for Internal Interrupt 4, so $0040 sets that bit

    
; OR in the value to preserve the other bits of the interrupt mask    







Sth r0, A_SIMASK(r31)
; write the changed mask back out to the

; interrupt controller

Remember that there must be 1 in the mask bit to let a pending interrupt through. Try changing the immediate value from $0040 to $0010. Make and run the program.

11. What is the difference between the original value and the modified value? Does the display increment? Why not? 

You can also set a breakpoint in InterruptHandler4 to see if that code is called.

Return to the original value of $0040. Consider the following instruction from InitInterrupt:

      li      r0,0xA042       ; set certain MSR bits, where MSR= EE PR FP ME FE0 SE BE FE1 – IP IR DR - - RI LE






; thus EE=1, RI=1

Try changing the immediate value from 0xA042 to 0x2042. Make and run the program.
12. What is the difference between the original value and the modified value? Does the display increment? Why not?
Be sure to return to the original value when done.

Notice that questions 10-12 changed the setup of the interrupt system at the device, the interrupt controller, and the processor. For an interrupt to occur, it must be enabled at each of these places in the system.

The last set of experiments will illustrate interrupt masking and priorities.

Suppose that you change the interrupt level assignment for the PIT timer by setting the PIRQ field = 0x1C. Notice that this value sets three bits, corresponding to the individual values 0x10, 0x08, 0x04, and these values correspond to level 3, level 4, and level 5, respectively. Thus, this value of PIRQ means that the PIT timer is assigned three different interrupt levels, with level 3 having the highest priority. So, when the PIT timer generates an interrupt request, the interrupt controller will see three pending interrupts in the SIPEND register.

Change the PIRQ field to 0x1C, and use the original SIMASK register (that enables a level 4 interrupt). What do you predict will happen when you make and run the program? Set breakpoints in the interrupt service routines InterruptHandler3, InterruptHandler4, and InterruptHandler5.

13. Which breakpoint is reached; that is, which ISR is called? Why? (Hint: what is the effect of the mask register?) 

Next, keeping PIRQ=0x1C, try changing the SIMASK register by ORing it with immediate value $0010 (to enable a level 5 interrupt).

14. Which breakpoint is reached; that is, which ISR is called? Why? 

Next, keeping PIRQ=0x1C, try changing the SIMASK register by ORing it with immediate value $0140 (to enable level 3 and level 4 interrupts).

15. Which breakpoint is reached; that is, which ISR is called? Why?
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