CPR E 381x/382x (Lab11b
TPU3 Module
1. Objectives

This lab introduces another important module of the MPC555, the TPU module. The TPU is controlled in much the same way as other modules we have introduced - you will be given a set of registers whose bits need to be manipulated in order to communicate with the module, giving it commands and passing data back and forth. The TPU is actually a processor which is completely separate from the MPC555, and can be programmed to do a number of tasks related to input/output signals. It can be used to capture very accurately timed events (rising / falling edge of a signal) as well as to generate output signals, leaving the main processor to tend to other issues without having to worry about accurately timing multiple signals. Because the TPU itself is quite complicated, Motorola builds a standard set of functions into the TPU3 which actually resides on the die (in silicon) on the chip. We will take advantage of this to build a frequency counter using the built-in frequency counting function of the TPU3.
2. Prelab
There are six files needed to interface to the TPU which take care of some of the details of using the TPU. You should look through these files to get an idea of what functions are available to you, as well as how a larger program, such as the TPU libraries, are constructed so they can be useful for a large number of applications. (Note the structs used to provide access to the bits of TPU registers in an easy to read way, rather than the bit manipulations we’ve used before. These will be discussed in the lab.).

3. Setup

As you did in previous labs, make sure you create the folder in your home directory U:\CPRE381\Labw11b to save all your work from this lab.

4. The TPU
This lab will explore the built-in FQM (Frequency Measurement) function of the TPU. There are 6 files you will need to download and add to your project. These are C libraries, so you should start a C project for this lab.

Add these to your project:

 m_common.h , m_tpu3.h

-- Provide struct definitions and other constants for use with the tpu

 mpc500_util.c , mpc500_util.h
-- Provide functions to control the TPU that are not specific to any one function.

 tpu_fqm.c , tpu_fqm.h

-- Provide functions that are specific to the FQM functionality of the TPU

The TPU works in the following way:

[image: image1.jpg]™MB3

Memory-mapped
interface

TPU

16-bit
counters

[Vicro-
Engine

U crEI

channels

The IMB3 bus on the left is how the TPU connects to the processor. It provides a read/write interface between the TPU and the CPU so they can communicate. All commands and data pass through this bus. Everything to the right of the IMB3 bus is the TPU module. The blue memory-mapped interface box provides a way to control the TPU. The system configuration portion controls the overall functionality of the TPU, the channel control portion selects parameters for each channel, and the parameter RAM provides a way to communicate with each channel individually.

The TPU provides 16 channels (we can only connect to 8 of them on the Power Box). Each of these channels is configured to do a certain task, whether that is a capture, compare, frequency measurement, or other function. (See the Lecture 14 notes for details on these terms if they are unfamiliar.) The TCR1 and TCR2 are two separate 16-bit counters, which are used to keep track of the elapsed time for the functions. Functions are able to choose between TCR1 and TCR2 as their input clock, and each of the 15 channels could be doing something completely different, so there are many possibilities.

The micro-engine of the TPU is basically like a small CPU with its own assembly language and way of operating, different from that of the MPC555. Luckily, Motorola realized that developers would not want to learn how to program a whole new processor, and included some general functions built-in. A function is selected for a particular channel by writing to the CFSR (Channel Function Select Register) for the appropriate channel. For instance, function 0xA has been defined as the Input Capture function. This will be done through the functions provided by the mpc500_util.c library.

Once the channel has been programmed for a certain function, the function must be configured. This is done in the parameter RAM, which is a general use RAM for the function to use as it needs. Each function has a different use for the parameter RAM, which is given in the corresponding app note for the function from Motorola’s site. Once it is configured, the function will run and capture or output the appropriate data on the channel pin it is configured for – that is, channel 1 sends and receives its data from TPU pin 1.

The TPU can generate an interrupt when a function completes or needs attention. While the TPU provides this functionality, we will be using it in polled mode to keep things simple.

In order to use the TPU functionality given to you in the mpc500_util library, you must use the TPU struct. The statement to initialize the struct is:

struct TPU3_tag *tpua = &TPU_A;

This connects a pointer to a struct of type TPU3_tag to the address of TPU A. Simply, the TPU has a base address (in this case 0x304000, TPU B is at 0x304400) and we are pointing a sort of cookie-cutter or mask (in the form of a carefully constructed struct) over top of this memory. This results in being able to access parts of the TPU more easily than remembering memory addresses and bit masks, etc. Take a look at the first couple of lines from m_tpu3.h which defines the TPU3_tag struct. Find this portion:

struct TPU3_tag {

 union {

 VUINT16 R;

 struct {

 VUINT16 STOP:1;

 VUINT16 TCR1P:2;

 VUINT16 TCR2P:2;

 VUINT16 EMU:1;

 VUINT16 T2CG:1;

 VUINT16 STF:1;

 VUINT16 SUPV:1;

 VUINT16 PSCK:1;

 VUINT16 TPU3:1;

 VUINT16 T2CSL:1;

 VUINT16:4;

 } B;

 } TPUMCR;

... (more register definitions follow, but are omitted here)

};

And here’s a corresponding portion of the user manual detailing a few of the bits from the TPUMCR register.

[image: image4.jpg]Table 17-6 TPUMCR Bit Descriptions

STOP

Low-power stop mode enable. If the STOP bitin TPUMCR is set, the TPUS shuts down its inter-
nal clocks, shutting down the internal microengine. TCR1 and TCR2 cease to increment and re-
tain the last value before the stop condition was entered. The TPUS asserts the stop flag (STF)
in TPUMCR to indicate that it has stopped.

nable TPU3 clocks

1= Disable TPU3 clocks

12

TCR1P

Timer count register 1 prescaler control. TCR1 Is clocked from the output of a prescaler. The
prescaler divides its input by 1, 2, 4, or 8. This is a write-once field unless the PWOD bit in
TPUMCRS is set.

00 = Divide by 1

Divide by 2

10 = Divide by 4

11 =Divide by 8

Refer to 17.3.8 Prescaler Control for TCR1 for more information.

This may look a little confusing at first, but it is actually not too complicated – there are just a lot of bits to keep track of! In the case of the TPU, the TPUMCR (TPU Module Configuration Register) is the first register in memory. It is a 16-bit register, and most of the bits of the register have different functions, just like in the serial port code you’ve written in earlier labs. Note that the struct is called TPU3_tag, within which is several unions, and inside of those unions are more structs. Unions and structs are both used to structure accesses to memory in a more intuitive way.

The general syntax of a struct is:

struct <optional name> {

 <variable type> <variable name> <: optional bit count>;

...<more variables>...

} <optional variable declaration>;

You access a “member” of a struct by using the “.” (dot) operator. For instance, to access the STOP bit of the TPU3, you would use:

struct TPU3_tag *tpua = &TPU_A;

(*(tpua)).TPUMCR.B.STOP = 1;

This is much easier than the *(tpua) = *(tpua) | 0x8000; that would have been required before, but more importantly it’s easier to understand what the code is doing.

The portion before the first dot is simply dereferencing the pointer, as we’ve done before when you want to write to the memory that the pointer is pointing at. Then the following dot means to select a member, and if you look back at the TPU3_tag struct, the first level of hierarchy is a union, and the union has been declared (you have to look at the last bracket of the union to find the declarations, remember!) with the name TPUMCR. Since we want to go inside of this union, we include it as the next level. Next we have two options – if we want to refer to the register as a whole then we would use the R variable that is given. However, since we want bit-level access, we instead choose the B struct that has been declared. Now that we’re inside the B struct, we’re finally able to access the STOP bit. Note the “:1” after the STOP variable back in the struct code, which tells the compiler that the variable isn’t a full 16 bits, it’s only 1 bit. There are several other variables that are 2 bits wide, and the special notation at the end of the struct that looks like VUINT16:4; doesn’t declare any variable but just reserves 4 bits, since those bits are not used.

To recap, using the structs we were able to access a bit of a register by following the hierarchy down:

tpua -> TPUMCR -> B -> STOP

turns to

 tpua->TPUMCR.B.STOP = 1;

in C code. Note that the “->” was so intuitive, that is actually a valid C operator. The two statements “(*(tpua)).” is equivalent to “tpua->”. Note that no dereferencing * is required anymore, it is implied in the -> operator. This operator helps to clean up the code, since the earlier way is a little hard to read.

We’ll be using the “.” operator and the “->” operator to access the TPU functionality in an easy way from C.

Question 1 – Using the information given above, write the C code to set the prescaler of the Timer1 counter to the “Divide by 8” setting, assuming the TPU3_tag struct is being used, and a tpua variable has been created for you.
5. FQM Function
The TPU has many built-in functions, but we will be focusing on the FQM function, which allows you to count the number of rising or falling edges in a certain time period.

[image: image2.jpg]wwwwww

You begin by setting the window. The window is specified in a certain number of clock ticks. The clock ticks come from either the TCR1 or TCR2 (the two counters the TPU has). So, let’s say you wanted to make the window 1 second, and perhaps the TCR1 was counting every 250 ms. You would then set the window to 0x0004 and set the timer option to use TCR1, which would give you 4 counts of the TCR1 for every 250ms count, which is 1 second.

What the FQM module does is count every rising or falling edge that occurs during the window (it’s configurable to either). For example, in the image above, two rising edges are detected in the window. The number of edges is counted and stored in a register in the TPU, and once the window is complete the FQM function sets the interrupt flag for the channel it is on. In the example above, the count of edges would equal 2. This can be easily converted to frequency by dividing the number of counts by the time of the window. So, if the window in the above example were 1 second, the 2 events would be divided by 1 second to get 2 Hz.

Question 2 – If 40 events are counted in a 20 ms window, what is the frequency? Think about the partial wave that could occur at the beginning and end of a window. What are the maximum / minimum frequencies that could cause the same number of events for the 20ms window, in other words, what is the accuracy of the reading?

More details of the TPU can be found in the MPC555 User’s Manual – Section 17, as well as the application note specific to the FQM function. The application note describes not only the FQM functionality, but also the C functions we will be using to control the FQM.

Here is some skeleton code to get you started on the lab. We’ll be using TCR1 for our counter.

struct TPU3_tag *tpua = &TPU_A;

main ()

{

//Declare variables

. . .

//Setup TPU and TCR1

tpua->TPUMCR.R = 0x2020; /* TCR1 prescaler divide by 2, supervisor and user acces. */

tpua->TPUMCR3.R = (0x0040 | (tcr1_div / 2 - 1)); /* enable enhanced prescaler for TCR1 - divide by tcr1_div */

tpua->TICR.B.CIRL = 5; /* set interupt level to 5.... */

tpua->TICR.B.ILBS = 0;

LCD_Init();

tpu_fqm_init((fill in parameters)); //Single shot mode, detecting rising edges

while(1)

tpu_ready((fill in parameters));

while(!tpu_check_interrupt((fill in parameters))) {}
//Wait for count to complete

tpu_clear_interrupt((fill in parameters));

//Clear pending interrupt

count = tpu_fqm_get_pulse((fill in parameters));

// Freqeuncy = count / ((tcr1_div / 10 MHz) * window size)

//

// Assumes IMB3 clock frequency of 10 MHz

sprintf(buffer, "Freq: %.0f Hz", (fill in equation));

LCD_Clear();

LCD_PutString(buffer);

}

return 0;

}

[image: image3.png]

Use the given libraries to determine the correct parameters to use in the following lab skeleton. Remember that some constants may be defined in the .h file. When you are ready to test your code, see the instructor for a BNC->Banana converter which you will connect the a function generator. Be sure to connect this to the TTL (Sync) output, and not the main output. You will then use two banana->pin cords from the lab to connect the signal from the function generator to the “ATUPCH” connector on the board (above Digital Out 1). The silkscreened letters on the PowerBox identify channels 0 – 7 of the TPU which are available. You should connect the red lead to one of these channels (and configure your program appropriately) and the black lead should be connected to the GND (Ground) pin.

Compile, run, and test your program. Demonstrate the program to your lab instructor.

CPR E 381x/382x (Labw11b
Answer Sheet
TPU3 Module
Name____________________

Name____________________

· Answers to Questions:

· Q1:

· Q2:

· Lab Demonstration
· Frequency Displays Correctly
TA Initials: ​​​​​_______​​​​​​_____

DATE: _____________

