CPR E 381x/382x (Lab12b
Messaging Service
1. Objectives

This lab involves writing a relatively large program using assembly language. As a result, it is expected to pull you up the learning curve, by putting into practice topics that have been discussed in lecture as well as by building upon skills used in the lab. The software you write in this lab will also serve as a foundation for the second laboratory project to be completed by teams in the lab. Thus, this lab also introduces you to the project and your team. New topics in this lab include: calling a C function from assembly, and managing a data buffer between I/O devices.

2. Prelab
Make sure you have a good understanding of the topics covered in lab 12a. Specifically the use of the COM port to read and write data will be used extensively in this lab. If you have any questions, please do not hesitate to ask you lab instructors.
3. Setup

As you did in previous labs, make sure you create the folder in your home directory U:\CPRE381\Labw12b to save all your work from this lab. Since the final parts of this lab will be completed in teams, make sure each team member has a copy of the project.
4. Lab Overview and Team Forming
This lab consists of 6 parts, labeled A – F. Parts A and B should be completed with your normal lab partner. For the remaining sections, you will need to form a team of 3-5 people. The team should include at least one member from a different lab group. You will remain with this team to work on the second project.
Note: You will have two lab sections to work on this lab. A good plan would be to finish sections A and B today, form a team, and begin work on C and D. Plan to finish up work on this lab next time, and complete a project planning activity.
A. Mixed C and Assembly Programs
Lab 12a used a technique to call an assembly language function from C:
· C caller

· Assembly callee

This was done using inline assembly code within the C program, and the “.export” directive in the assembly code. JumpASM is an inline assembly function that calls assembly function StartAsm. Notice that JumpASM creates a stack frame for itself. In CodeWarrior, you established a linkage between the C and assembly modules. Inline assembly is not required; all assembly code could be separate from C.
There are also techniques to call a C function from assembly:
· Assembly caller

· C callee

A function call transfers control to the function regardless of whether the source is originally in C or assembly. With the appropriate call/return mechanisms, the call branches from the caller to the callee, and the return branches back from callee to caller. Conventions or rules used by the compiler need to be followed.
In the C file, the keyword "extern" in the function prototype makes the function visible to other modules during the make. In the assembly file, the “.import” directive with the function name tells the assembler that the name is defined elsewhere.
· C file (with the callee function prototype): extern function_type function_name (params);

· Assembly file (with the caller function): .import function_name

Your code will still use a bl instruction in the assembly caller to call the C function, e.g., bl my_C_function; this sets up the Link Register with the return address to return to the assembly code. Your assembly code will also need to pass any parameters to the C function using registers. That is, put parameter values in EABI-compliant registers before calling the C function. Remember, a C function expects to find its parameters in registers starting with register R3. However, notice that preserving the Link Register or nonvolatile registers and setting up local variables in the C function itself – or anything related to the C function’s stack frame – is now the responsibility of the C compiler. The C compiler sets up the stack frame. When code is written in C, the programmer is not responsible for code maintenance. The C function, for example, will return correctly to the assembly caller. So when mixing C and assembly code, some of the work is done for you by the compiler.
However, remember that the compiler is following the EABI rules. So, it is essential for you as the programmer to also follow the EABI rules in your assembly code. YOU MUST FOLLOW THE RULES CAREFULLY IN YOUR ASSEMBLY CODE.

 EABI Application Note
 Information on applying EABI
1. Use the LCD_Clear function from QTerm.c to clear the QTerm LCD display when bit 6 of DIP Switch 1 is set. Call the C function from your Lab 12a assembly program. The purpose of this lab exercise is to successfully call a C function from an assembly program. The function should take two parameters, the first of which is a pointer to the DIP Switch to check. The second should be the bit to be checked. The prototype of the function might look like:

void C_Clear_LCD(unsigned char* dip_switch, unsigned char bit)
 If you were calling this function from C, it might look like:

 C_Clear_LCD(pDIPSwitch1, 6);
You should refer to QTerm.c and QTerm.h for details on the LCD display.
· Notice that clearing the display is done by sending the Escape character, 0x1B, followed by character 'E' to the QTerm over COM2. This is just for your reference, you will not need to actually send these characters out, this is just telling you the details of what LCD_Clear() actually does.

· Notice that a character is sent using the serial I/O interface and protocol (i.e., waits for ready to send).

· The solution uses modular programming. That is, the C function definition is in a source file, and the function prototype is in a header file.

· Your program should have an infinite loop in the main() of the C code, and not in the assembly file. That is, the assembly function should return after it calls the C_Clear_LCD function. This ensures that you are implementing the EABI stack frame correctly.

· Note that the default C file included with an Assembly project has the JumpAsm() function, which is meant to demonstrate inline assembly, and is unnecessary. You should call your ASM portion of the program using a direct call to the assembly code. As long as you have an “extern” statement at the beginning of the C code to import the assembly function, you can directly call that function using, as an example for the StartAsm function,
StartAsm();

Compile, debug, and test the clear LCD function. Demonstrate the program to the TA.

B. Text Buffer: Buffering Data Between Input and Output

2. Write an assembly program that reads a key from the QTerm keypad, puts the key into a data buffer, and writes it to the QTerm LCD display. If bit 7 of DIP Switch 1 is set, send the data to the display – that is, output is active. If bit 7 of DIP Switch 1 is not set, do not send the data to the display – that is, output is suspended. Input remains active. No data should be lost.
· You should modify your code from Lab 12a.

Design Components
· data buffer - QTBufferIn (for characters from QTerm Keypad)
· position variables for the buffer
· input position, i.e., where the next character read in goes
· output position, i.e., where the next character to be output comes from

· function Read_QTerm - Reads up to 1 character from COM2 (QTerm) and places the character into a buffer
· function Write_QTerm - Writes up to 1 character to the QTerm LCD from a buffer

Consider the buffer depicted below.

	location 0
	
	
	
	
	next input 
	
	
	
	location N-1

	3
	A
	8
	9
	F
	
	
	
	…
	

	 buffer begin
	
	
	 next output
	
	
	
	
	
	 buffer end

The buffer is of size N characters (bytes). The first character typed on the keypad was ‘3’, placed in location 0 of the buffer. The next character was ‘A’, at location 1, or an offset of 1 past buffer begin. Assume that five characters have been typed in and added to the buffer, and only three characters have been sent to the display so far, i.e., the display reads “3A8”. As a result, the next input location is 5, and the next output location is 3. The buffer could be viewed as an array in C, as follows:

 char buffer [N]

 int position

 buffer[position] denotes an element of the buffer; so for position = 5, gives the element for the next character received from the keypad; for position = 3, gives the element for the next character to send to the display

 buffer itself is the address of the array in memory; so buffer+5 is the address of the next input location; buffer+3 is the address of the next output location

Notice that the next input is always greater than or equal to the next output. If next input = next output, then all characters have been displayed. Your program should work if, for example, output is temporarily suspended, such that new characters received increment next input while next output remains the same.

You should consider and implement a solution to how to deal with the case when next input is past the end of the buffer, as well as a full buffer.

Code Snippets

Several coding examples related to this program are shown below. These are separate fragments.

	.data
;;;
; Memory allocation for data
;
QT_In_Pos:
 .short 0 ; short global variable for input position
QT_Out_Pos:
 .short 0 ; short global variable for output position
QTBufferIn:
 .space 512 ; 512 bytes of storage space for data buffer from QTerm

	;;;
; r21 = key pressed on QTerm
; r22 = address of QTBufferIn array
; r23 = address of QT_In_Pos
; r24 = value of QT_In_Pos
...
Add_Key_Buffer:
 ; Store key pressed (r21) to QTBufferIn + QT_In_Pos
 stbx r21, r22, r24 ; r21 -> M[r22 + r24]
 ; Write QT_In_Pos + 1 to move position for added character
 addi r24, r24, 1 ; increment the QT_In_Pos by 1
 sth r24, 0(r23) ; store QT_In_Pos to address in r23

	; r15 = address of QT_Out_Pos
; r16 = value of QT_Out_Pos
; compare the buffer input and output positions
...
 ; Get value of QT_In_Pos and place in r24
 lhz r24, 0(r23) ; r24 <- M[r23 + 0]
 ; Get value of QT_Out_Pos and place in r16
 lhz r16, 0(r15) ; r16 <- M[r15 + 0]
 ; Compare QT_In_Pos and QT_Out_Pos
 cmpw r24, r16
 ; Branch if QT_In_Pos <= QT_Out_Pos, i.e., no data to output, already done
 ble QTerm_NoOutput

[image: image1.png]

Compile, debug, and test the buffer code. Demonstrate the program to the TA.
C, D and E. Two Way Messaging

Now that you have finished parts A and B, get together with your team to complete the following sections as follows:
C. Half of Team: Implement a buffer for transferring data from the QTerm to the Hyperterminal.

D. Half of Team: Implement a buffer for transferring data from the Hyperterminal to the QTerm.

E. Team: Merge the code from C and D into one program.

In the remainder of this lab, you will be designing a messaging service. The QTerm unit will be used as a terminal in a tractor for communicating with a remote station. Using the QTerm terminal, a farmer or service technician in the field can report and retrieve information to/from a remote computer – at home, in the shop, or even in another tractor. In the actual system, information would be sent via either a wireless-based networking protocol (e.g., IEEE 802.11) or a cellular dialup connection. In the lab, we will be emulating the remote station and wireless interface using the desktop PC, HyperTerminal, and serial communication.
[image: image2.jpg]PC - HyperTerminal

Power PC 555
microcontroller

	

	
	[image: image3.png]Remote Station (PC HyperTerminal)

Tractor Terminal (QTerm)

]

QTBuffer

COM1

PCBuffer

Messages can be sent in either direction. For example, when the user types in a message at the QTerm keypad, the information is sent to the PC. Messages move from right to left in the illustration above, read from the keypad over COM2, put in the QTBuffer, and written to the HyperTerminal over COM1. Alternatively, when the user types in a message at the HyperTerminal keyboard, the information is sent to the QTerm LCD. Messages move from left to right in the illustration above, read from the PC keyboard over COM1, put in the PCBuffer, and written to the QTerm LCD over COM2. Messages can be simultaneously typed in. Message data should not be lost.

In this part of the lab, you are not required to control the display of the messages. For example, messages typed in simultaneously will appear on both displays. In the next part of the lab, you will add modes that control which message is being displayed.

You will need to extend the code developed in Section 2 of this lab to include two data buffers (remember to save the old code to hand in for section B before updating it for this section). Each data buffer is handled with its own read and write functions and respective serial ports. Data is added to QTBuffer from COM2, and removed onto COM1; vice versa for PCBuffer.

3. There are two steps to this part of the lab: Activity C and Activity D. Lab partners can complete both steps; or a project team can assign each step to different partners in the team, where partners complete only one of the steps, and then the steps are merged into one program for the team.
Activity C: Write assembly code to implement the QTBuffer and messaging from the QTerm to the HyperTerminal.
 Reuse the code to read the QTerm; write a new function to write to the HyperTerminal.
 Be sure to use the correct COM ports.
Activity D: Write assembly code to implement the PCBuffer and messaging from the HyperTerminal to the QTerm.
 Reuse the code to write the QTerm; write a new function to read from the HyperTerminal.
 Be sure to use the correct COM ports.
The behavior of the software system can be partitioned as follows:

· Reading QTerm for input from its keypad (COM2)
· Reading the PC for input from the keyboard (COM1)
· Writing information to the QTerm (COM2)

· Writing information to the PC (COM1)
Design Components
· 2 buffers - QTBuffer, PCBuffer
· Position variables for the buffers (i.e., where to put/get next data)
· Read_QTerm - Reads up to 1 character from COM2 (QTerm) and places the character into a buffer
· Read_PC - Reads up to 1 character from COM1 and places the character into a buffer
· Write_PC - Writes up to 1 character to the PC via COM1
· Write_QTerm - Writes up to 1 character to the QTerm LCD via COM2

Code Structure
Set up the code to read/write only one character at a time over a serial connection per pass through the main loop, repeatedly calling the functions to read and write characters.

MainLoop:
…
Call Read_QTerm
Call Read_PC
Call Write_QTerm
Call Write_PC
…
b MainLoop
All functions should be non-blocking, meaning that they should not loop inside of the function until a QTerm or HyperTerm character is pressed - they should return in some fairly quick amount of time.

 [image: image4.png]

Compile, debug, and test the text messaging code. Demonstrate the program to the TA.
REMINDERS
When you press a key on the QTerm keypad, it is not automatically displayed on the QTerm LCD. You need to write it out via the serial port for it to appear. For the HyperTerminal, you can use one of its menus to configure it to echo a character to the terminal window.

The actual setup for the serial ports will still be done using the same methods as in previous labs. Be sure to call LCD_Init and PC_Init. These two functions initialize the serial ports to 9600 baud (bps) and clear out any outstanding communications that are pending. See the Lab 1 code if you are unsure how to include and call these functions from your C program.

Serial I/O Addresses
COM1 - Connected to PC
	Name
	Address
	Description

	Com1Status
	0x0030500C
	COM1 Status (16 bits)
 - Bit 8 - Ready to transmit/send/write
 - Bit 6 - Ready to receive/read

	Com1Data
	0x0030500E
	COM1 Data (16 bits)
 - Only use the lower 8 bits

COM2 - Connected to QTerm
	Name
	Address
	Description

	Com2Status
	0x00305024
	COM2 Status (16 bits)
 - Bit 8 - Ready to transmit/send/write
 - Bit 6 - Ready to receive/read

	Com2Data
	0x00305026
	COM2 Data (16 bits)
 - Only use the lower 8 bits

F. Messaging Modes

Working with your team, suppose that the messaging service operates in two basic modes, a query mode and a response mode. In the query mode, the user types in a query message at the QTerm keypad and the information is sent to the PC. In the response mode, the QTerm LCD display shows a response message sent from the PC. One mode will be selected and activated using the Function keys on the QTerm keypad; however, messages can be simultaneously typed in. Message data should not be lost.

 Query mode is entered when key F1 on the QTerm keypad is pressed. In query mode, data is transferred from the PowerBox QTerm to the PC HyperTerminal. The user types on the QTerm keypad and text is seen in the HyperTerminal window.

o Text is buffered in QTBuffer and echoed to the QTerm LCD.

 Response mode is entered when key F2 on the QTerm keypad is pressed. In response mode, data is transferred from the PC HyperTerminal to the PowerBox QTerm.

o Text is buffered in PCBuffer and echoed to the HyperTerminal window.

 Function key F5 is pressed to clear both buffers.

Notice that the mode determines which message (from the QTerm or from the HyperTerminal) is actually being displayed. If you switch between modes, you will see the message currently in the buffer corresponding to the selected mode.

Consider a scenario such as this:

1. Farmer enters the query mode (presses F1) and types in (at QTerm keypad):

FIELD#3 SOYBEAN

This message is displayed on the QTerm LCD and the HyperTerminal window.
2. The message "Seeding: 500.0 kg" is typed in at the PC keyboard as a response.

3. Farmer switches to the response mode (presses F2) to see (on QTerm LCD):

Seeding: 500.0 kg

It is displayed on the HyperTerminal window and the QTerm LCD.
4. Switches to the query mode (presses F1) and the original command re-appears on both the QTerm and the HyperTerm:

FIELD#3 SOYBEAN
5. Switches to the response mode (presses F2) and the text re-appears:

Seeding: 500.0 kg
6. Clears both displays by pressing F5
blank screens

7. Switches to the query mode by pressing F1
blank screens

8. Switches to the response mode by pressing F2
blank screens
In this lab, your objective will be to reproduce results similar to the sample scenario.

You will need to extend the code developed in Section 3 of this lab to include the modes (don't forget to save the old sections to turn in with you final code before modifying them for this section)..

Additional Design Components
· Programming logic to initialize and switch modes
- Enters the query mode when F1 is pressed
- Enters the response mode when F2 is pressed
- Refer to file QTerm.h for values of keys F1, F2, etc.

· Clear_QTerm - Clears the QTerm LCD when bit 6 of DIP Switch 1 is set (see Section 1 of this lab)

· Clear_Buffers - Clears both the query and response buffers when F5 is pressed

Notice that Read_QTerm might result in a function key or a character for the text message. A function key must be decoded to determine the mode or trigger other actions, such as clearing the buffers.

4. Write a program to implement the messaging service using the design components above. Clear_QTerm and Clear_Buffers must be written as C functions, and the rest of the components must be in assembly.
Note: There is no function to clear the Hyperterm display, when clearing the display, it is acceptable to just move down a couple lines on the PC display.
[image: image5.png]

Compile, debug, and test the messaging code. Demonstrate the program to the TA.

CPR E 381x/382x (Labw12b
Lab Partner Answer Sheet
Messaging Service

Name____________________

Name____________________
· Lab Demonstration
· Section A: Mixed C and Assembly
· Section B: Text Buffer
TA Initials: ​​​​​_______​​​​​​_____

DATE: _____________

CPR E 381x/382x (Labw12b
Team Answer Sheet

Messaging Service
Team Members:
Name____________________

Name____________________

Name____________________

Name____________________

Name____________________

Part C

 Part D

Names of those completing:

Names of those completing:

Lab Demonstration:

Section F: Messaging Modes

· Switches between modes
· Clears buffers via F5 using C function
· Text is displayed on both QTerm and PC

