Pipelining

- Reconsider the data path we just did
- Each instruction takes from 3 to 5 clock cycles
- However, there are parts of hardware that are idle many time
- We can reorganize the operation
- Make each hardware block independent
 - 1. Instruction Fetch Unit
 - 2. Register Read Unit
 - 3. ALU Unit
 - 4. Data Memory Read/Write Unit
 - 5. Register Write Unit
- Units in 3 and 5 cannot be independent, but operations can be
- Let each unit just do its required job for each instruction
- If for some instruction, a unit need not do anything, it can simply perform a noop

Gain of Pipelining

- Improve performance by increasing instruction throughput
- Ideal speedup is number of stages in the pipeline
- Do we achieve this? No, why not?

Pipelining

- What makes it easy
 - all instructions are the same length
 - just a few instruction formats
 - memory operands appear only in loads and stores
- What makes it hard?
 - structural hazards: suppose we had only one memory
 - control hazards: need to worry about branch instructions
 - data hazards: an instruction depends on a previous instruction
- We'll study these issues using a simple pipeline
- Other complication:
 - exception handling
 - trying to improve performance with out-of-order execution, etc.

Basic Idea

What do we need to add to actually split the datapath into stages?

Pipelined Data Path

Can you find a problem even if there are no dependencies? What instructions can we execute to manifest the problem?

Corrected Data Path

Execution Time

- Time of n instructions depends on
 - Number of instructions n
 - # of stages k
 - # of control hazard and penalty of each step
 - # of data hazards and penalty for each
- Time = n + k 1 + load hazard penalty + branch penalty
- Load hazard penalty is 1 or 0 cycle
 - depending on data use with forwarding
- branch penalty is 3, 2, 1, or zero cycles depending on scheme

Design and Performance Issues With Pipelining

- Pipelined processors are not EASY to design
- Technology affect implementation
- Instruction set design affect the performance, i.e., beq, bne
- More stages do not lead to higher performance

Pipeline Operation

- In pipeline one operation begins in every cycle
- Also, one operation completes in each cycle
- Each instruction takes 5 clock cycles (k cycles in general)
- When a stage is not used, no control needs to be applied
- In one clock cycle, several instructions are active
- Different stages are executing different instructions
- How to generate control signals for them is an issue

Graphically Representing Pipelines

- Can help with answering questions like:
 - how many cycles does it take to execute this code?
 - what is the ALU doing during cycle 4?
 - use this representation to help understand datapaths

Instruction Format

	JUMP JUMP			JUMP		ADDRESS					
31	26	25	21	20	16	15	11	10	6	5	0
	BEQ/BNE REG 1		G 1	REG 2			BRANCH ADDRESS			OFFSET	
31	26	25	21	20	16	15	11	10	6	5	0
	R-TYPE	REG	G 1	REG	2		DST	SHIFT A	MOUNT	ADI	D/AND/OR/SLT
31	26	25	21	20	16	15	11	10	6	5	0
	SW	REG	G 1	REG	2		STORE ADDRESS				OFFSET
31	26	26 25 21		20	0 1615		11 10		6	5	0
	LW	v REG 1		REG 2			LOAD ADDRESS				OFFSET
31	26	25	21	20	16	15	11	10	6	5	0

Operation for Each Instruction

LW:	SW:	R-Type:	BR-Type:	JMP-Type:
1. READ INST	1. READ INST	1. READ INST	1. READ INST	1. READ
				INST
2. READ REG 1	2. READ REG 1	2. READ REG 1	2. READ REG 1	2.
READ REG 2	READ REG 2	READ REG 2	READ REG 2	
3. ADD REG 1 + OFFSET	3. ADD REG 1 + OFFSET	3. OPERATE on REG 1 / REG 2	3. SUB REG 2 from REG 1	3.
4. READ MEM	4. WRITE MEM	4.	4.	4.
5. WRITE REG2	5.	5. WRITE DST	5.	5.

Pipeline Data Path Operation

Fetch Unit

Register Fetch Unit

ALU Operation and Branch Logic

Memory and Write back Stage

Pipeline Data Path Operation

Dependencies

- Problem with starting next instruction before first is finished
 - dependencies that "go backward in time" are data hazards

A program with data dependencies

Consider the following program

```
add $t0, $t1, $t2
add $t1, $t0, $t3
and $t2, $t4, $t0
or $t3, $t1, $t0
slt $t4, $t2, $t3
```

- Problem with starting next instruction before first is finished
 - dependencies that "go backward in time" are data hazards

Data Path Operation

Solution: Software No-ops/Hardware Bubbles

- Have compiler guarantee no hazards
- Where do we insert the "no-ops"?

```
sub$2, $1, $3and$12, $2, $5or$13, $6, $2add$14, $2, $2sw$15, 100($2)
```

Problem: this really slows us down!

- Also, the program will always be slow even if a techniques like forwarding is employed afterwards in newer version
- Hardware can detect dependencies and insert no-ops in hardware
 - Hardware detection and no-op insertion is called stalling
 - This is a bubble in pipeline and waste one cycle at all stages
 - Need two or three bubbles between write and read of a register

Hazard Detection Unit

Stall by letting an instruction that won't write anything go forward

Stalling

- Hardware detection and no-op insertion is called stalling
- We stall the pipeline by keeping an instruction in the same stage

Stalled Operation (no write before read)

Stalled Operation (write before read)

Detecting Hazards for Forwarding

EX hazard

- If ((EX/MEM.RegWrite) and (EX/MEM.RegisterRd != 0) and (EX/MEM.REgisterRd = ID/EX.RegisterRs)) ForwardA = 10
- If ((EX/MEM.RegWrite) and (EX/MEM.RegisterRd != 0) and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB = 10

MEM hazard

- If ((MEM/WB.RegWrite) and (MEM/WB.REgisterRd != 0) and (MEM/WB.REgisterRd = ID/EX.RegisterRs)) ForwardA = 01
- If ((MEM/WB.RegWrite) and (MEM/WB.REgisterRd != 0) and (MEM/WB.REgisterRd = ID/EX.RegisterRt)) ForwardB = 10
- In case of lw followed by a sw instruction, forwarding will not work. This is because data in MEM stage are still being read
 - Plan on adding forwarding in MEM stage of put a stall/bubble
- In case of lw followed by an instruction that uses the value
 - One has to add an stall

Forwarding

- Use temporary results, don't wait for them to be written
 - register file forwarding to handle read/write to same register
 - ALU forwarding
 - May also need forwarding to memory (think!!)

Forwarding

Can't always forward

- Load word can still cause a hazard:
 - an instruction tries to read a register following a load instruction that writes to the same register.

Thus, we need a hazard detection unit to "stall" the load instruction

Branch Hazards

• When we decide to branch, other instructions are in the pipeline!

- We are predicting "branch not taken"
 - need to add hardware for flushing instructions if we are wrong

Improving Performance

• Try and avoid stalls! E.g., reorder these instructions:

```
lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)
```

- Add a "branch delay slot"
 - the next instruction after a branch is always executed
 - rely on compiler to "fill" the slot with something useful
- Superscalar: start more than one instruction in the same cycle

Other Issues in Pipelines

- Exceptions
 - Errors in ALU for arithmetic instructions
 - Memory non-availability
- Exceptions lead to a jump in a program
- However, the current PC value must be saved so that the program can return to it back for recoverable errors
- Multiple exception can occur in a pipeline
- Preciseness of exception location is important in some cases
- I/O exceptions are handled in the same manner

Handling Branches

- Branch Prediction
 - Usually we may simply assume that branch is not taken
 - If it is taken, then we flush the pipeline
 - Clear control signals for instruction following branch
- Delayed branch
 - Fill instructions that need to be executed even if branch occur
 - If none available fill NOOPs
- Reduce delay in resolving branches
 - Compare at register stage
 - Branch prediction table
 - PC value (for branch) and next address
 - One or two bits to store what should be prediction

Two State vs Four State Branch Prediction

Two state model

Four State Model

Pipeline with Early Branch Resolution/Exception

Superscalar Architecture

A Modern Pipelined Microprocessor

Important Facts to Remember

- Pipelined processors divide the execution in multiple steps
- However pipeline hazards reduce performance
 - Structural, data, and control hazard
- Data forwarding helps resolve data hazards
 - But all hazards cannot be resolved
 - Some data hazards require bubble or noop insertion
- Effects of control hazard reduced by branch prediction
 - Predict always taken, delayed slots, branch prediction table
 - Structural hazards are resolved by duplicating resources

Pipeline control

- We have 5 stages. What needs to be controlled in each stage?
 - Instruction Fetch and PC Increment
 - Instruction Decode / Register Fetch
 - Execution
 - Memory Stage
 - Write Back
- How would control be handled in an automobile plant?
 - a fancy control center telling everyone what to do?
 - should we use a finite state machine?

Pipeline Control

Pipeline Control

Pass control signals along just like the data

	Execution/Address Calculation stage control lines				Memory access stage control lines			stage control lines		
Instruction	Reg Dst	ALU Op1	ALU Op0	ALU Src	Branch	Mem Read	Mem Write	Reg write	Mem to Reg	
R-format	1	1	0	0	0	0	0	1	0	
lw	0	0	0	1	0	1	0	1	1	
sw	X	0	0	1	0	0	1	0	Χ	
beq	Х	0	1	0	1	0	0	0	Х	

Data Path with Control

Flushing Instructions

