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• We will design a simplified MIPS processor
• The instructions supported are

– memory-reference instructions:  lw, sw
– arithmetic-logical instructions:  add, sub, and, or, slt
– control flow instructions:  beq, j

• Generic Implementation:

– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why?  memory-reference?  arithmetic? control flow?

Datapath & Control Design
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• We need an ALU
– We have already designed that

• We need memory to store inst and data
– Instruction memory takes address and supplies inst
– Data memory takes address and supply data for lw
– Data memory takes address and data and write into memory

• We need to manage a PC and its update mechanism
• We need a register file to include 32 registers

– We read two operands and write a result back in register file
• Some times part of the operand comes from instruction
• We may add support of immediate class of instructions
• We may add support for J, JR, JAL

What blocks we need
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Simple Implementation

• Include the functional units we need for each instruction

Why do we need this stuff?
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• Abstract / Simplified View:

• Two types of functional units:
– elements that operate on data values (combinational)

• Example: ALU
– elements that contain state (sequential)

• Examples: Program and Data memory, Register File

More Implementation Details

Registers
Register #

Data

Register #

Data 
memory

Address

Data

Register #

PC Instruction ALU

Instruction 
memory

Address
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• Unclocked vs. Clocked
• Clocks used in synchronous logic 

– when should an element that contains state be updated?

cycle time
rising edge

falling edge

Managing State Elements
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MIPS Instruction Format

31                            26  25                      21  20 16 15                       11 10     6     5                            0

JUMP JUMP                                                            ADDRESS

31                            26  25                      21  20 16 15                       11 10     6     5                            0

REG 1 REG 2BEQ/BNE/J BRANCH ADDRESS                               OFFSET

31                            26  25                      21  20 16 15                       11 10     6     5                            0

REG 1 REG 2SW STORE ADDRESS                                   OFFSET

31                            26  25                      21  20 16 15                       11 10     6     5                            0

REG 1 REG 2LW LOAD ADDRESS                                     OFFSET

31                            26  25                      21  20 16 15                       11 10     6     5                            0

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

31                            26  25                      21  20 16 15                       11 10     6     5                            0

REG 1 REG 2I-TYPE IMMEDIATE DATA
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Building the Datapath

• Use multiplexors to stitch them together
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A Complete Datapath for R-Type Instructions

• Lw, Sw, Add, Sub, And, Or, Slt can be performed
• For j (jump) we need an additional multiplexor
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What Else is Needed in Data Path

• Support for j and jr
– For both of them PC value need to come from somewhere else
– For J, PC is created by 4 bits (31:28) from old PC, 26 bits from IR 

(27:2) and 2 bits are zero (1:0)
– For JR, PC value comes from a register

• Support for JAL
– Address is same as for J inst
– OLD PC needs to be saved in register 31

• And what about immediate operand instructions
– Second operand from instruction, but without shifting

• Support for other instructions like lw and immediate inst write
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Operation for Each Instruction 

LW:

1. READ INST

2. READ REG 1

READ REG 2

3. ADD REG 1 + 
OFFSET 

4. READ MEM

5. WRITE REG2

SW:

1. READ INST

2. READ REG 1

READ REG 2

3. ADD REG 1 + 
OFFSET 

4. WRITE MEM

5. 

R/I/S-Type:

1. READ INST

2. READ REG 1

READ REG 2

3. OPERATE on 
REG 1 / REG 2 

4. 

5. WRITE DST

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

3. SUB REG 2 
from REG 1

4. 

5. 

JMP-Type:

1. READ 

INST

2. 

3.  

4. 

5. 
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Data Path Operation
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• All of the logic is combinational
• We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away
– we use write signals along with clock to determine when to write

• Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times

Clock cycle

State 
element 

1
Combinational logic

State 
element 

2
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Control Points

M
U
X

PC

Shift
Left 2

25-00

25-21

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

INST
MEMORY

IA

INST

4 A
D
D

DATA
MEMORY

MA

MDWD

M
U
X

ALU

M
U
X

M
U
X

ADD

REG
FILE

RA1

RA2
RD1

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

jmp
AND

brzero

WE
RDES

ALU
SRC

MR MW

Memreg



14

LW Instruction Operation
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SW Instruction Operation
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R-Type Instruction Operation
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BR-Instruction Operation
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Jump Instruction Operation
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Control

• For each instruction
– Select the registers to be read (always read two)
– Select the 2nd ALU input 
– Select the operation to be performed by ALU
– Select if data memory is to be read or written
– Select what is written and where in the register file
– Select what goes in PC

• Information comes from the 32 bits of the instruction
• Example:

add $8, $17, $18 Instruction Format:
000000 10001 10010 01000 00000 100000

 
op rs rt rd shamt funct
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Adding Control to DataPath

Instruction RegDst ALUSrc
Memto-

Reg
Reg 

Write
Mem 
Read

Mem 
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

PC

Instruction 
memory

Read 
address

Instruction 
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4
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0
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Write 
data

Read 
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control
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• ALU's operation based on instruction type and function code 
– e.g., what should the ALU do with any instruction

• Example:  lw $1, 100($2)

•
35 2 1 100

 op rs rt 16 bit offset

• ALU control input

000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

• Why is the code for subtract 110 and not 011?

ALU Control
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• Must describe hardware to compute 3-bit ALU conrol input
– given instruction type 

00 = lw, sw
01 = beq, 
10 = arithmetic

 11 = Jump
– function code for arithmetic

• Control can be described using a truth table:

ALUOp
computed from instruction type

Other Control Information

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111
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Implementation of Control

• Simple combinational logic to realize the truth tables

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

ALUOp0

ALUOp

ALU control block

R-format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO
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A Complete Datapath with Control
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Datapath with Control and Jump Instruction
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Timing: Single Cycle Implementation

• Calculate cycle time assuming negligible delays except:
– memory (2ns), ALU and adders (2ns), register file access (1ns)
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Where we are headed

• Design a data path for our machine specified in the next 3 slides
• Single Cycle Problems:

– what if we had a more complicated instruction like floating point?
– wasteful of area

• One Solution:
– use a “smaller” cycle time and use different numbers of cycles 

for each instruction using a “multicycle” datapath:

PC

Memory

Address

Instruction 
or data

Data

Instruction 
register

Registers
Register #

Data

Register #

Register #

ALU

Memory 
data  

register

A

B

ALUOut
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• 16-bit data path (can be 4, 8, 12, 16, 24, 32)
• 16-bit instruction (can be any number of them)
• 16-bit PC (can be 16, 24, 32 bits)
• 16 registers (can be 1, 4, 8, 16, 32)
• With m register, log m bits for each register
• Offset depends on expected offset from registers
• Branch offset depends on expected jump address
• Many compromise are made based on number of bits in instruction

Machine Specification
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• LW R2, #v(R1) ; Load memory from address (R1) + v
• SW R2, #v(R1) ; Store memory to address (R1) + v
• R-Type – OPER R3, R2, R1 ; Perform R3 ß R2 OP R1

– Five operations ADD, AND, OR, SLT, SUB
• I-Type – OPER R2, R1, V ; Perform R2 ß R1 OP V

– Four operation ADDI, ANDI, ORI, SLTI
• B-Type – BC  R2, R1, V; Branch if condition met to address PC+V

– Two operation BNE, BEQ
• Shift class – SHIFT TYPE R2, R1 ; Shift R1 of type and result to R2

– One operation
• Jump Class -- JAL and JR (JAL can be used for Jump)

– What are th implications of J vs JAL
– Two instructions

Instruction
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• LW/SW/BC – Requires opcode, R2, R1, and V values
• R-Type – Requires opcode, R3, R2, and R1 values
• I-Type – Requires opcode, R2, R1, and V values
• Shift class – Requires opcode, R2, R1, and shift type value
• JAL requires opcode and jump address
• JR requires opcode and register address
• Opcode – can be fixed number or variable  number of bits
• Register address – 4 bits if 16 registers
• How many bits in V?
• How many bits in shift type?

– 4 for 16 types, assume one bit shift at a time
• How many bits in jump address? 

Instruction bits needed
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• Measure,  Report, and Summarize
• Make intelligent choices
• See through the marketing hype
• Key to understanding underlying organizational motivation

Why is some hardware better than others for different programs?

What factors of system performance are hardware related?
(e.g., Do we need a new machine, or a new operating system?)

How does the machine's instruction set affect performance?

Performance



32

Which of these airplanes has the best performance?

Airplane Passengers Range (mi) Speed  (mph)

Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

•How much faster is the Concorde compared to the 747? 

•How much bigger is the 747 than the Douglas DC-8?
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• Response Time (latency)
— How long does it take for my job to run?
— How long does it take to execute a job?
— How long must I wait for the database query?

• Throughput
— How many jobs can the machine run at once?
— What is the average execution rate?
— How much work is getting done?

• If we upgrade a machine with a new processor what do we increase?
If we add a new machine to the lab what do we increase?

Computer Performance:  TIME, TIME, TIME



34

• Elapsed Time
– counts everything  (disk and memory accesses, I/O , etc.)
– a useful number, but often not good for comparison purposes

• CPU time
– doesn't count I/O or time spent running other programs
– can be broken up into system time, and user time

• Our focus:  user CPU time 
– time spent executing the lines of code that are "in" our program

Execution Time
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Clock Cycles

• Instead of reporting execution time in seconds, we often use cycles

• Clock “ticks” indicate when to start activities (one abstraction):

• cycle time = time between ticks = seconds per cycle
• clock rate (frequency) = cycles per second  (1 Hz. = 1 cycle/sec)

A 200 Mhz. clock has a                                                   cycle time 

time

seconds
program

=
cycles

program
×

seconds
cycle

  
1

200 ×106  
×109 = 5 nanoseconds
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So, to improve performance (everything else being equal) you can either

________ the # of required cycles for a program, or

________ the clock cycle time or,  said another way, 

________ the clock rate.

How to Improve Performance

seconds
program

=
cycles

program
×

seconds
cycle
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• Could assume that # of cycles = # of instructions

This assumption is incorrect,

different instructions take different amounts of time on different machines.

Why? hint:  remember that these are machine instructions, not lines of C code

time
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How many cycles are required for a program?
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• Multiplication takes more time than addition

• Floating point operations take longer than integer ones

• Accessing memory takes more time than accessing registers

• Important point:  changing the cycle time often changes the number of 
cycles required for various instructions (more later)

time

Different numbers of cycles for different instructions
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• A given program will require

– some number of instructions (machine instructions)

– some number of cycles

– some number of seconds

• We have a vocabulary that relates these quantities:

– cycle time (seconds per cycle)

– clock rate (cycles per second)

– CPI (cycles per instruction) 
a floating point intensive application might have a higher CPI

– MIPS (millions of instructions per second)
this would be higher for a program using simple instructions

Now that we understand cycles
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Performance

• Performance is determined by execution time
• Do any of the other variables equal performance?

– # of cycles to execute program?
– # of instructions in program?
– # of cycles per second?
– average # of cycles per instruction?
– average # of instructions per second?

• Common pitfall:  thinking one of the variables is indicative of 
performance when it really isn’t.
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• A compiler designer is trying to decide between two code sequences 
for a particular machine.  Based on the hardware implementation,
there are three different classes of instructions:  Class A, Class B, 
and Class C, and they require one, two, and three cycles 
(respectively).  

The first code sequence has 5 instructions:   2 of A, 1 of B, and 2 of C
The second sequence has 6 instructions:  4 of A, 1 of B, and 1 of C.

Which sequence will be faster?  How much?
What is the CPI for each sequence?

# of Instructions Example
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• Two different compilers are being tested for a 100 MHz. machine with 
three different classes of instructions:  Class A, Class B, and Class 
C, which require one, two, and three cycles (respectively).  Both 
compilers are used to produce code for a large piece of software.

The first compiler's code uses 5 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructions.

The second compiler's code uses 10 million Class A instructions, 1 
million Class B instructions, and 1 million Class C instructions.

• Which sequence will be faster according to MIPS?
• Which sequence will be faster according to execution time?

MIPS example


