
1

• We will design a simplified MIPS processor
• The instructions supported are

– memory-reference instructions: lw, sw
– arithmetic-logical instructions: add, sub, and, or, slt
– control flow instructions: beq, j

• Generic Implementation:

– use the program counter (PC) to supply instruction address
– get the instruction from memory
– read registers
– use the instruction to decide exactly what to do

• All instructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?

Datapath & Control Design

2

• We need an ALU
– We have already designed that

• We need memory to store inst and data
– Instruction memory takes address and supplies inst
– Data memory takes address and supply data for lw
– Data memory takes address and data and write into memory

• We need to manage a PC and its update mechanism
• We need a register file to include 32 registers

– We read two operands and write a result back in register file
• Some times part of the operand comes from instruction
• We may add support of immediate class of instructions
• We may add support for J, JR, JAL

What blocks we need

3

Simple Implementation

• Include the functional units we need for each instruction

Why do we need this stuff?

PC

Instruction
memory

Instruction
address

Instruction

a. Instruction memory b. Program counter

Add Sum

c. Adder

ALU control

RegWrite

Registers
Write
register

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Write
data

ALU
result

ALU

Data

Data

Register
numbers

a. Registers b. ALU

Zero
5

5

5 3

16 32
Sign

extend

b. Sign-extension unit

MemRead

MemWrite

Data
memory

Write
data

Read
data

a. Data memory unit

Address

4

• Abstract / Simplified View:

• Two types of functional units:
– elements that operate on data values (combinational)

• Example: ALU
– elements that contain state (sequential)

• Examples: Program and Data memory, Register File

More Implementation Details

Registers
Register #

Data

Register #

Data
memory

Address

Data

Register #

PC Instruction ALU

Instruction
memory

Address

5

• Unclocked vs. Clocked
• Clocks used in synchronous logic

– when should an element that contains state be updated?

cycle time
rising edge

falling edge

Managing State Elements

6

MIPS Instruction Format

31 26 25 21 20 16 15 11 10 6 5 0

JUMP JUMP ADDRESS

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2BEQ/BNE/J BRANCH ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2SW STORE ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2LW LOAD ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2I-TYPE IMMEDIATE DATA

7

Building the Datapath

• Use multiplexors to stitch them together

PC

Instruction
memory

Read
address

Instruction

16 32

Add ALU
result

M
u
x

Registers

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Shift
left 2

4

M
u
x

ALU operation3

RegWrite

MemRead

MemWrite

PCSrc

ALUSrc
MemtoReg

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

Add

8

A Complete Datapath for R-Type Instructions

• Lw, Sw, Add, Sub, And, Or, Slt can be performed
• For j (jump) we need an additional multiplexor

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31–0]

Instruction [20–16]

Instruction [25–21]

Add

Instruction [5–0]

RegWrite

4

16 32Instruction [15–0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15–11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

9

What Else is Needed in Data Path

• Support for j and jr
– For both of them PC value need to come from somewhere else
– For J, PC is created by 4 bits (31:28) from old PC, 26 bits from IR

(27:2) and 2 bits are zero (1:0)
– For JR, PC value comes from a register

• Support for JAL
– Address is same as for J inst
– OLD PC needs to be saved in register 31

• And what about immediate operand instructions
– Second operand from instruction, but without shifting

• Support for other instructions like lw and immediate inst write

10

Operation for Each Instruction

LW:

1. READ INST

2. READ REG 1

READ REG 2

3. ADD REG 1 +
OFFSET

4. READ MEM

5. WRITE REG2

SW:

1. READ INST

2. READ REG 1

READ REG 2

3. ADD REG 1 +
OFFSET

4. WRITE MEM

5.

R/I/S-Type:

1. READ INST

2. READ REG 1

READ REG 2

3. OPERATE on
REG 1 / REG 2

4.

5. WRITE DST

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

3. SUB REG 2
from REG 1

4.

5.

JMP-Type:

1. READ

INST

2.

3.

4.

5.

11

Data Path Operation

M
U
X

PC

Shift
Left 2

25-00

25-21

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

INST
MEMORY

IA

INST

4 A
D
D

DATA
MEMORY

MA

MDWD

M
U
X

ALU

M
U
X

M
U
X

ADD

REG
FILE

RA1

RA2
RD1

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

jmp
AND

brzero

WE
RDES

ALU
SRC

MR MW

Memreg

12

• All of the logic is combinational
• We wait for everything to settle down, and the right thing to be done

– ALU might not produce “right answer” right away
– we use write signals along with clock to determine when to write

• Cycle time determined by length of the longest path

Our Simple Control Structure

We are ignoring some details like setup and hold times

Clock cycle

State
element

1
Combinational logic

State
element

2

13

Control Points

M
U
X

PC

Shift
Left 2

25-00

25-21

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

INST
MEMORY

IA

INST

4 A
D
D

DATA
MEMORY

MA

MDWD

M
U
X

ALU

M
U
X

M
U
X

ADD

REG
FILE

RA1

RA2
RD1

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

jmp
AND

brzero

WE
RDES

ALU
SRC

MR MW

Memreg

14

LW Instruction Operation

M
U
X

PC

Shift
Left 2

25-00

25-21

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

INST
MEMORY

IA

INST

4 A
D
D

DATA
MEMORY

MA

MDWD

M
U
X

ALU

M
U
X

M
U
X

ADD

REG
FILE

RA1

RA2
RD1

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

jmp
AND

brzero

WE
RDES

ALU
SRC

MR MW

Memreg

15

SW Instruction Operation

M
U
X

PC

Shift
Left 2

25-00

25-21

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

INST
MEMORY

IA

INST

4 A
D
D

DATA
MEMORY

MA

MDWD

M
U
X

ALU

M
U
X

M
U
X

ADD

REG
FILE

RA1

RA2
RD1

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

jmp
AND

brzero

WE
RDES

ALU
SRC

MR MW

Memreg

16

R-Type Instruction Operation

M
U
X

PC

Shift
Left 2

25-00

25-21

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

INST
MEMORY

IA

INST

4 A
D
D

DATA
MEMORY

MA

MDWD

M
U
X

ALU

M
U
X

M
U
X

ADD

REG
FILE

RA1

RA2
RD1

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

jmp
AND

brzero

WE
RDES

ALU
SRC

MR MW

Memreg

17

BR-Instruction Operation

M
U
X

PC

Shift
Left 2

25-00

25-21

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

INST
MEMORY

IA

INST

4 A
D
D

DATA
MEMORY

MA

MDWD

M
U
X

ALU

M
U
X

M
U
X

ADD

REG
FILE

RA1

RA2
RD1

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

jmp
AND

brzero

WE
RDES

ALU
SRC

MR MW

Memreg

18

Jump Instruction Operation

M
U
X

PC

Shift
Left 2

25-00

25-21

20-16

15-11

15-00

05-00

31-26

31-00

Sign
Ext

INST
MEMORY

IA

INST

4 A
D
D

DATA
MEMORY

MA

MDWD

M
U
X

ALU

M
U
X

M
U
X

ADD

REG
FILE

RA1

RA2
RD1

RD2WA WD M
U
X

ALU
CON

ALUOP

CONTROL

jmp
AND

brzero

WE
RDES

ALU
SRC

MR MW

Memreg

19

Control

• For each instruction
– Select the registers to be read (always read two)
– Select the 2nd ALU input
– Select the operation to be performed by ALU
– Select if data memory is to be read or written
– Select what is written and where in the register file
– Select what goes in PC

• Information comes from the 32 bits of the instruction
• Example:

add $8, $17, $18 Instruction Format:
000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

20

Adding Control to DataPath

Instruction RegDst ALUSrc
Memto-

Reg
Reg

Write
Mem
Read

Mem
Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4

16 32Instruction [15– 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

Shift
left 2

M
u
x

1

ALU
result

Zero

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15– 11]

ALU
control

ALU
Address

21

• ALU's operation based on instruction type and function code
– e.g., what should the ALU do with any instruction

• Example: lw $1, 100($2)

•
35 2 1 100

 op rs rt 16 bit offset

• ALU control input

000 AND
001 OR
010 add
110 subtract
111 set-on-less-than

• Why is the code for subtract 110 and not 011?

ALU Control

22

• Must describe hardware to compute 3-bit ALU conrol input
– given instruction type

00 = lw, sw
01 = beq,
10 = arithmetic

 11 = Jump
– function code for arithmetic

• Control can be described using a truth table:

ALUOp
computed from instruction type

Other Control Information

ALUOp Funct field Operation
ALUOp1 ALUOp0 F5 F4 F3 F2 F1 F0

0 0 X X X X X X 010
X 1 X X X X X X 110
1 X X X 0 0 0 0 010
1 X X X 0 0 1 0 110
1 X X X 0 1 0 0 000
1 X X X 0 1 0 1 001
1 X X X 1 0 1 0 111

23

Implementation of Control

• Simple combinational logic to realize the truth tables

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

ALUOp0

ALUOp

ALU control block

R-format Iw sw beq

Op0
Op1
Op2
Op3
Op4
Op5

Inputs

Outputs

RegDst

ALUSrc

MemtoReg

RegWrite

MemRead

MemWrite

Branch

ALUOp1

ALUOpO

24

A Complete Datapath with Control

25

Datapath with Control and Jump Instruction

26

Timing: Single Cycle Implementation

• Calculate cycle time assuming negligible delays except:
– memory (2ns), ALU and adders (2ns), register file access (1ns)

MemtoReg

MemRead

MemWrite

ALUOp

ALUSrc

RegDst

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

Add

Instruction [5– 0]

RegWrite

4

16 32Instruction [15– 0]

0
Registers

Write
register
Write
data

Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

Sign
extend

ALU
result

Zero

Data
memory

Address Read
data M

u
x

1

0

M
u
x

1

0

M
u
x

1

0

M
u
x

1

Instruction [15– 11]

ALU
control

Shift
left 2

PCSrc

ALU

Add ALU
result

27

Where we are headed

• Design a data path for our machine specified in the next 3 slides
• Single Cycle Problems:

– what if we had a more complicated instruction like floating point?
– wasteful of area

• One Solution:
– use a “smaller” cycle time and use different numbers of cycles

for each instruction using a “multicycle” datapath:

PC

Memory

Address

Instruction
or data

Data

Instruction
register

Registers
Register #

Data

Register #

Register #

ALU

Memory
data

register

A

B

ALUOut

28

• 16-bit data path (can be 4, 8, 12, 16, 24, 32)
• 16-bit instruction (can be any number of them)
• 16-bit PC (can be 16, 24, 32 bits)
• 16 registers (can be 1, 4, 8, 16, 32)
• With m register, log m bits for each register
• Offset depends on expected offset from registers
• Branch offset depends on expected jump address
• Many compromise are made based on number of bits in instruction

Machine Specification

29

• LW R2, #v(R1) ; Load memory from address (R1) + v
• SW R2, #v(R1) ; Store memory to address (R1) + v
• R-Type – OPER R3, R2, R1 ; Perform R3 ß R2 OP R1

– Five operations ADD, AND, OR, SLT, SUB
• I-Type – OPER R2, R1, V ; Perform R2 ß R1 OP V

– Four operation ADDI, ANDI, ORI, SLTI
• B-Type – BC R2, R1, V; Branch if condition met to address PC+V

– Two operation BNE, BEQ
• Shift class – SHIFT TYPE R2, R1 ; Shift R1 of type and result to R2

– One operation
• Jump Class -- JAL and JR (JAL can be used for Jump)

– What are th implications of J vs JAL
– Two instructions

Instruction

30

• LW/SW/BC – Requires opcode, R2, R1, and V values
• R-Type – Requires opcode, R3, R2, and R1 values
• I-Type – Requires opcode, R2, R1, and V values
• Shift class – Requires opcode, R2, R1, and shift type value
• JAL requires opcode and jump address
• JR requires opcode and register address
• Opcode – can be fixed number or variable number of bits
• Register address – 4 bits if 16 registers
• How many bits in V?
• How many bits in shift type?

– 4 for 16 types, assume one bit shift at a time
• How many bits in jump address?

Instruction bits needed

31

• Measure, Report, and Summarize
• Make intelligent choices
• See through the marketing hype
• Key to understanding underlying organizational motivation

Why is some hardware better than others for different programs?

What factors of system performance are hardware related?
(e.g., Do we need a new machine, or a new operating system?)

How does the machine's instruction set affect performance?

Performance

32

Which of these airplanes has the best performance?

Airplane Passengers Range (mi) Speed (mph)

Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

•How much faster is the Concorde compared to the 747?

•How much bigger is the 747 than the Douglas DC-8?

33

• Response Time (latency)
— How long does it take for my job to run?
— How long does it take to execute a job?
— How long must I wait for the database query?

• Throughput
— How many jobs can the machine run at once?
— What is the average execution rate?
— How much work is getting done?

• If we upgrade a machine with a new processor what do we increase?
If we add a new machine to the lab what do we increase?

Computer Performance: TIME, TIME, TIME

34

• Elapsed Time
– counts everything (disk and memory accesses, I/O , etc.)
– a useful number, but often not good for comparison purposes

• CPU time
– doesn't count I/O or time spent running other programs
– can be broken up into system time, and user time

• Our focus: user CPU time
– time spent executing the lines of code that are "in" our program

Execution Time

35

Clock Cycles

• Instead of reporting execution time in seconds, we often use cycles

• Clock “ticks” indicate when to start activities (one abstraction):

• cycle time = time between ticks = seconds per cycle
• clock rate (frequency) = cycles per second (1 Hz. = 1 cycle/sec)

A 200 Mhz. clock has a cycle time

time

seconds
program

=
cycles

program
×

seconds
cycle

1

200 ×106
×109 = 5 nanoseconds

36

So, to improve performance (everything else being equal) you can either

________ the # of required cycles for a program, or

________ the clock cycle time or, said another way,

________ the clock rate.

How to Improve Performance

seconds
program

=
cycles

program
×

seconds
cycle

37

• Could assume that # of cycles = # of instructions

This assumption is incorrect,

different instructions take different amounts of time on different machines.

Why? hint: remember that these are machine instructions, not lines of C code

time

1s
t i

ns
tru

ct
io

n

2n
d

in
st

ru
ct

io
n

3r
d

in
st

ru
ct

io
n

4t
h

5t
h

6t
h ...

How many cycles are required for a program?

38

• Multiplication takes more time than addition

• Floating point operations take longer than integer ones

• Accessing memory takes more time than accessing registers

• Important point: changing the cycle time often changes the number of
cycles required for various instructions (more later)

time

Different numbers of cycles for different instructions

39

• A given program will require

– some number of instructions (machine instructions)

– some number of cycles

– some number of seconds

• We have a vocabulary that relates these quantities:

– cycle time (seconds per cycle)

– clock rate (cycles per second)

– CPI (cycles per instruction)
a floating point intensive application might have a higher CPI

– MIPS (millions of instructions per second)
this would be higher for a program using simple instructions

Now that we understand cycles

40

Performance

• Performance is determined by execution time
• Do any of the other variables equal performance?

– # of cycles to execute program?
– # of instructions in program?
– # of cycles per second?
– average # of cycles per instruction?
– average # of instructions per second?

• Common pitfall: thinking one of the variables is indicative of
performance when it really isn’t.

41

• A compiler designer is trying to decide between two code sequences
for a particular machine. Based on the hardware implementation,
there are three different classes of instructions: Class A, Class B,
and Class C, and they require one, two, and three cycles
(respectively).

The first code sequence has 5 instructions: 2 of A, 1 of B, and 2 of C
The second sequence has 6 instructions: 4 of A, 1 of B, and 1 of C.

Which sequence will be faster? How much?
What is the CPI for each sequence?

of Instructions Example

42

• Two different compilers are being tested for a 100 MHz. machine with
three different classes of instructions: Class A, Class B, and Class
C, which require one, two, and three cycles (respectively). Both
compilers are used to produce code for a large piece of software.

The first compiler's code uses 5 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructions.

The second compiler's code uses 10 million Class A instructions, 1
million Class B instructions, and 1 million Class C instructions.

• Which sequence will be faster according to MIPS?
• Which sequence will be faster according to execution time?

MIPS example

