Numbers

- Bits are just bits (no inherent meaning)
- conventions define relationship between bits and numbers
- Binary numbers (base 2)

000000010010001101000101011001111000 1001... decimal: 0...2n-1

- Of course it gets more complicated:
numbers are finite (overflow)
fractions and real numbers
negative numbers
e.g., no MIPS subi instruction; addi can add a negative number)
- How do we represent negative numbers?
i.e., which bit patterns will represent which numbers?

Possible Representations

- Sign Magnitude: One's Complement Two's Complement

$000=+0$	$000=+0$	$000=+0$
$001=+1$	$001=+1$	$001=+1$
$010=+2$	$010=+2$	$010=+2$
$011=+3$	$011=+3$	$011=+3$
$100=-0$	$100=-3$	$100=-4$
$101=-1$	$101=-2$	$101=-3$
$110=-2$	$110=-1$	$110=-2$
$111=-3$	$111=-0$	$111=-1$

- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?

MIPS

- 32 bit signed numbers:

```
00000000 0000 0000 0000 0000 0000 0000 two = 0 ten
00000000000000000000000000000 0001 two = + 1 1 ten
00000000000000000000000000000 0010 two 
0111 1111 1111 1111 1111 1111 1111 1110 two = + 2,147,483,646% ten
maxint
0111 1111 1111 1111 1111 11111 1111 1111 two = + 2,147,483,647 ten
1000 0000 0000 0000 0000 0000 0000 00000 two = - 2,147,483,648t
1000 0000 0000 0000 0000 0000 0000 0001 two = - 2,147,483,647ten
1000 0000 0000 0000 0000 0000 0000 0010 two = - 2,147,483,6466ten
1111 1111 1111 1111 1111 11111 1111 1101 two = - 3 ten
1111 1111 1111 1111 1111 1111 1111 1110 two = - 2 ten
1111 1111 1111 1111 1111 1111 1111 1111 two = - 1 (ten
```


Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
- remember: "negate" and "invert" are quite different!
- Converting \mathbf{n} bit numbers into numbers with more than \mathbf{n} bits:
- MIPS 16 bit immediate gets converted to 32 bits for arithmetic
- copy the most significant bit (the sign bit) into the other bits

$$
\begin{array}{llll}
0010 & -> & 0000 & 0010 \\
1010 & \rightarrow & 1111 & 1010
\end{array}
$$

- "sign extension" (lbu vs. lb)

Addition \& Subtraction

- Just like in grade school (carry/borrow 1s)

0111	0111	0110
+0110	-0110	-0101

- Two's complement operations easy
- subtraction using addition of negative numbers

0111
$\begin{array}{r}+1010 \\ \hline\end{array}$

- Overflow (result too large for finite computer word):
- e.g., adding two n-bit numbers does not yield an n-bit number

0111
+0001 note that overflow term is somewhat misleading,
1000 it does not mean a carry "overflowed"

One-Bit Adder

- Takes three input bits and generates two output bits
- Multiple bits can be cascaded

Adder Boolean Algebra

- A B Cl COS
- 00000
- 001001
- 01001
$C=A \cdot B+A . C l+B . C l$
- 011110

- 10110
- 11010
- 11111

Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
- overflow when adding two positives yields a negative
- or, adding two negatives gives a positive
- or, subtract a negative from a positive and get a negative
- or, subtract a positive from a negative and get a positive
- Consider the operations A + B, and A - B
- Can overflow occur if B is 0 ?
- Can overflow occur if \mathbf{A} is $\mathbf{0}$?

Effects of Overflow

- An exception (interrupt) occurs
- Control jumps to predefined address for exception
- Interrupted address is saved for possible resumption
- Details based on software system / language
- example: flight control vs. homework assignment
- Don't always want to detect overflow
— new MIPS instructions: addu, addiu, subu
note: addiu still sign-extends!
note: sltu, sltiu for unsigned comparisons

Real Design

- ABCDEF
- 000000
- 001100
- $\begin{array}{lllllll}0 & 1 & 0 & 1 & 0 & 0 & D=A+B+C\end{array}$
- 01111110
- $100001000 \quad E=A^{\prime} \cdot B \cdot C+A \cdot B^{\prime} . C+A \cdot B \cdot C^{\prime}$
- 101110
- $11100110 \quad F=A . B . C$
- 11111001

An ALU (arithmetic logic unit)

- Let's build an ALU to support the andi and ori instructions
- we'll just build a 1 bit ALU, and use 32 of them

- Possible Implementation (sum-of-products):

Different Implementations

- Not easy to decide the "best" way to build something
- Don't want too many inputs to a single gate
- Don't want to have to go through too many gates
- for our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:

$$
\begin{aligned}
& c_{\text {out }}=a b+a c_{i n}+b c_{i n} \\
& s u m=a \text { xor } b \text { xor } c_{i n}
\end{aligned}
$$

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

What about subtraction (a-b) ?

- Two's complement approach: just negate b and add.
- How do we negate?
- A very clever solution:

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
- remember: slt is an arithmetic instruction
- produces a 1 if rs <rt and 0 otherwise
- use subtraction: (a-b) < 0 implies $a<b$
- Need to support test for equality (beq \$t5, \$t6, \$t7)
- use subtraction: (a-b) $=0$ implies $\mathbf{a}=\mathrm{b}$

Supporting slt

- Can we figure out the idea?

ธ่

A 32-bit ALU

- A Ripple carry ALU
- Two bits decide operation
- Add/Sub
- AND
- OR
- LESS
- 1 bit decide add/sub operation
- A carry in bit
- Bit 31 generates overflow and set bit

Test for equality

- Notice control lines:

```
000 = and
001 = or
010 = add
110 = subtract
111 = slt
```

-Note: zero is a 1 when the result is zero!

Problem: ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
- two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

$$
\begin{aligned}
& c_{1}=b_{0} c_{0}+a_{0} c_{0}+a_{0} b_{0} \\
& c_{2}=b_{1} c_{1}+a_{1} c_{1}+a_{1} b_{1} c_{2}= \\
& c_{3}=b_{2} c_{2}+a_{2} c_{2}+a_{2} b_{2} c_{3}= \\
& c_{4}=b_{3} c_{3}+a_{3} c_{3}+a_{3} b_{3} c_{4}=
\end{aligned}
$$

Not feasible! Why?

Carry-look-ahead adder

- An approach in-between our two extremes
- Motivation:
- If we didn't know the value of carry-in, what could we do?
- When would we always generate a carry?

$$
\begin{aligned}
& g_{i}=a_{i} b_{i} \\
& p_{i}=a_{i}+b_{i}
\end{aligned}
$$

- When would we propagate the carry?
- Did we get rid of the ripple?
$c_{1}=g_{0}+p_{0} C_{0}$
$c_{2}=g_{1}+p_{1} c_{1} \quad c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}$
$c_{3}=g_{2}+p_{2} c_{2}$
$c_{3}=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0}$
$\mathrm{c}_{4}=\mathrm{g}_{3}+\mathrm{p}_{3} \mathrm{C}_{3}$
$c_{4}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} c_{0}$

Feasible! Why?

A 4-bit carry look-ahead adder

- Generate g and p term for each bit
- Use g's, p's and carry in to generate all C's
- Also use them to generate block G and P
- CLA principle can be used recursively

Use principle to build bigger adders

- A 16 bit adder uses four 4-bit adders
- It takes block g and p terms and cin to generate block carry bits out
- Block carries are used to generate bit carries
- could use ripple carry of 4-bit CLA adders
- Better: use the CLA principle again!

Delays in carry look-ahead adders

- 4-Bit case
- Generation of g and $p: 1$ gate delay
- Generation of carries (and G and P): 2 more gate delay
- Generation of sum: 1 more gate delay
- 16-Bit case
- Generation of g and $p: 1$ gate delay
- Generation of block G and P: 2 more gate delay
- Generation of block carries: 2 more gate delay
- Generation of bit carries: 2 more gate delay
- Generation of sum: 1 more gate delay
- 64-Bit case
- 12 gate delays

Multiplication

- More complicated than addition
- accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on grade school algorithm

$$
\begin{aligned}
01010010 & \text { (multiplicand) } \\
\times \mathbf{x} 01101101 & \text { (multiplier) }
\end{aligned}
$$

- Negative numbers: convert and multiply
- Use other better techniques like Booth's encoding

Multiplication

Multiplication: Implementation

Multiplication Example

Itera- tion	multi- plicand	Orignal algorithm		
	0010	Step	Product	
1	0010	$1: 0 \Rightarrow$ no operation	00000110	
	0010	$2:$ Shift right Product	00000110	
2	0010	$1 \mathrm{a}: 1 \Rightarrow$ prod = Prod + Mcand	00000011	
	0010	$2:$ Shift right Product	00100011	
3	0010	$1 \mathrm{a}: 1 \Rightarrow$ prod = Prod + Mcand	00010001	
	0010	$2:$ Shift right Product	00011000	
4	0010	$1: 0 \Rightarrow$ no operation	00011000	

Signed Multiplication

- Let Multiplier be Q[n-1:0], multiplicand be M[n-1:0]
- Let F = 0 (shift flag)
- Let result A[n-1:0] = 0.... 00
- For n-1 steps do
- $\mathrm{A}[\mathrm{n}-1: 0]=\mathrm{A}[\mathrm{n}-1: 0]+\mathrm{M}[\mathrm{n}-1: 0] \times \mathrm{Q}[0]$ /* add partial product */
- $\mathrm{F}<=\mathrm{F}$.or. (M[n-1] .and. $\mathrm{Q}[0]$) /* determine shift bit */
- Shift A and Q with F, i.e.,
- $A[n-2: 0]=A[n-1: 1] ; A[n-1]=F ; Q[n-1]=A[0] ; Q[n-2: 0]=Q[n-1: 1]$
- Do the correction step
- A[n-1:0] = A[n-1:0]-M[n-1:0] x Q[0] /* subtract partial product */
- Shift A and Q while retaining $A[n-1]$
- This works in all cases excepts when both operands are $10 . .00$

Booth's Encoding

- Numbers can be represented using three symbols, 1, 0, and -1
- Let us consider -1 in 8 bits
- One representation is 11111111
- Another possible one $0000000-1$
- Another example +14
- One representation is 00001110
- Another possible one 000100-10
- We do not explicitly store the sequence
- Look for transition from previous bit to next bit
- 0 to 0 is $0 ; 0$ to 1 is $-1 ; 1$ to 1 is 0 ; and 1 to 0 is 1
- Multiplication by 1, 0 , and -1 can be easily done
- Add all partial results to get the final answer

Using Booth's Encoding for Multiplication

- Convert a binary string in Booth's encoded string
- Multiply by two bits at a time
- For \mathbf{n} bit by $\mathbf{n - b i t}$ multiplication, $\mathbf{n} / \mathbf{2}$ partial product
- Partial products are signed and obtained by multiplying the multiplicand by $0,+1,-1,+2$, and -2 (all achieved by shift)
- Add partial products to obtain the final result
- Example, multiply 0111 (+7) by 1010 (-6)
- Booths encoding of 1010 is $\mathbf{- 1 + 1 - 1 0}$
- With 2-bit groupings, multiplication needs to be carried by -1 and -2
-

1	1	1	1	0	0	1	0	(multiplication by -2)
1	1	1	0	0	1	0	0	(multiplication by -1 and shift by 2 positions)

- Add the two partial products to get 11010110 (-42) as result

Booth's algorithm (Neg. multiplier)

Itera- tion	multi- plicand	Booth's algorithm	
	0010	Snitial values	Product
1	0010	1c: $10 \Rightarrow$ prod = Prod - Mcand	111011010
	0010	2: Shift right Product	111101101
2	0010	1b: $01 \Rightarrow$ prod = Prod + Mcand	000101101
	0010	2: Shift right Product	000010110
3	0010	1c: $10 \Rightarrow$ prod = Prod - Mcand	111010110
	0010	2: Shift right Product	111101011
4	0010	1d: $11 \Rightarrow$ no operation	111101011
	0010	2: Shift right Product	11110101

Carry-Save Addition

- Consider adding six set of numbers (4 bits each in the example)
- The numbers are 1001, 0110, 1111, 0111, 1010, 0110 (all positive)
- One way is to add them pair wise, getting three results, and then adding them again

1001	1111	1010	01111	${ }_{1}^{100101}$
0110	0111	0110	10110	
01111	10110	10000	100101	

- Other method is add them three at a time by saving carry

Division

- Even more complicated
- can be accomplished via shifting and addition/subtraction
- More time and more area
- We will look at 3 versions based on grade school algorithm

$$
0011 \mid 00100010 \text { (Dividend) }
$$

- Negative numbers: Even more difficult
- There are better techniques, we won't look at them

Division

Restoring Division

Iteration	Divisor	Divide algorithm	
		Step	Remainder
0	0010	Initial values	00000111
	0010	Shift Rem left 1	00001110
1	0010	2: Rem = Rem - Div	11101110
	0010	3b: Rem < $0 \Rightarrow+$ Div, sll R, R $0=0$	00011100
2	0010	2: Rem = Rem - Div	11111100
	0010	3b: Rem $<0 \Rightarrow+$ Div, sll $\mathrm{R}, \mathrm{R} 0=0$	00111000
3	0010	2: Rem = Rem - Div	00011000
	0010	3a: Rem $\geq 0 \Rightarrow$ sll $\mathrm{R}, \mathrm{R} 0=1$	00110001
4	0010	2: Rem = Rem - Div	00010001
	0010	3a: Rem $\geq 0 \Rightarrow$ sll $\mathrm{R}, \mathrm{R} 0=1$	00100011
Done	0010	shift left half of Rem right 1	00010011

Non-Restoring Division

Iteration	Divisor	Divide algorithm	
		Step	Remainder
0	0010	Initial values	00001110
1	0010	1: Rem $~$ Rem - Div	11101110
	0010	2b: Rem $<0 \Rightarrow$ sll R, R0 $=0$	11011100
	0010	3b: Rem $=$ Rem + Div	11111100
	0010	2b: Rem $<0 \Rightarrow$ sll R, R0 $=0$	11111000
	0010	3b: Rem $=$ Rem + Div	00011000
	0010	2a: Rem $>0 \Rightarrow$ sll R, R0 $=1$	00110001
	0010	3a: Rem $=$ Rem - Div	00010001
4	0010	2a: Rem > $0 \Rightarrow$ sll R, R0 $=1$	00100011
Done	0010	shift left half of Rem right 1	00010011

