Numbers

- Bits are just bits (no inherent meaning)
 - conventions define relationship between bits and numbers
- Binary numbers (base 2) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001... decimal: 0...2ⁿ-1
- Of course it gets more complicated:
 - numbers are finite (overflow)
 - fractions and real numbers
 - negative numbers
 - e.g., no MIPS subi instruction; addi can add a negative number)
- How do we represent negative numbers?
 - i.e., which bit patterns will represent which numbers?

Possible Representations

•	Sign Magnitude:	One's Complement	Two's Complement
	000 = +0	000 = +0	000 = +0
	001 = +1	001 = +1	001 = +1
	010 = +2	010 = +2	010 = +2
	011 = +3	011 = +3	011 = +3
	100 = -0	100 = -3	100 = -4
	101 = -1	101 = -2	101 = -3
	110 = -2	110 = -1	110 = -2
	111 = -3	111 = -0	111 = -1

- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?

• 32 bit signed numbers:

Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
 - remember: "negate" and "invert" are quite different!
- Converting n bit numbers into numbers with more than n bits:
 - MIPS 16 bit immediate gets converted to 32 bits for arithmetic
 - copy the most significant bit (the sign bit) into the other bits

0010 -> 0000 0010

1010 -> 1111 1010

- "sign extension" (lbu vs. lb)

Addition & Subtraction

- Just like in grade school (carry/borrow 1s)

 0111
 0111
 0110
 + 0110
 0110
 0101
- Two's complement operations easy
 - subtraction using addition of negative numbers
 0111

+ 1010

- Overflow (result too large for finite computer word):
 - e.g., adding two n-bit numbers does not yield an n-bit number
 0111

+ 0001	note that overflow term is somewhat misleading,
1000	it does not mean a carry "overflowed"

One-Bit Adder

- Takes three input bits and generates two output bits
- Multiple bits can be cascaded

Adder Boolean Algebra

- A B CI COS
- 0 0 0 0 0
- 0 0 1 0 1
- 0 1 0 0 1
- 0 1 1 1 0
- 1 0 0 0 1
- 1 0 1 1 0
- 1 1 0 1 0
- 1 1 1 1 1

C = A.B + A.CI + B.CI

S = A.B.CI + A'.B'.CI+A'.B.CI'+A.B'.CI'

Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - overflow when adding two positives yields a negative
 - or, adding two negatives gives a positive
 - or, subtract a negative from a positive and get a negative
 - or, subtract a positive from a negative and get a positive
- Consider the operations A + B, and A B
 - Can overflow occur if B is 0?
 - Can overflow occur if A is 0?

Effects of Overflow

- An exception (interrupt) occurs
 - Control jumps to predefined address for exception
 - Interrupted address is saved for possible resumption
- Details based on software system / language
 - example: flight control vs. homework assignment
- Don't always want to detect overflow
 - new MIPS instructions: addu, addiu, subu

note: addiu still sign-extends! note: sltu, sltiu for unsigned comparisons

Real Design

• ABC DEF 0 0 0 0 0 0 • • 0 0 1 1 0 0 0 1 0 1 0 0 D = A + B + C • 1 1 0 0 1 1 • 1 0 0 E = A'.B.C + A.B'.C + A.B.C' 1 0 0 • • 1 0 1 1 1 0 • 1 1 0 1 1 0 F = A.B.C 1 0 1 • 1 1 1

An ALU (arithmetic logic unit)

- Let's build an ALU to support the andi and ori instructions
 - we'll just build a 1 bit ALU, and use 32 of them

• Possible Implementation (sum-of-products):

Different Implementations

- Not easy to decide the "best" way to build something
 - Don't want too many inputs to a single gate
 - Don't want to have to go through too many gates
 - for our purposes, ease of comprehension is important
- Let's look at a 1-bit ALU for addition:

- How could we build a 1-bit ALU for add, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

13

What about subtraction (a – b) ?

- Two's complement approach: just negate b and add.
- How do we negate?

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
 - remember: slt is an arithmetic instruction
 - produces a 1 if rs < rt and 0 otherwise</p>
 - use subtraction: (a-b) < 0 implies a < b</p>
- Need to support test for equality (beq \$t5, \$t6, \$t7)
 - use subtraction: (a-b) = 0 implies a = b

Supporting slt

• Can we figure out the idea?

16

A 32-bit ALU

- A Ripple carry ALU
- Two bits decide operation
 - Add/Sub
 - AND
 - OR
 - LESS
- 1 bit decide add/sub operation
- A carry in bit
- Bit 31 generates overflow and set bit

Test for equality

18

Problem: ripple carry adder is slow

- Is a 32-bit ALU as fast as a 1-bit ALU?
- Is there more than one way to do addition?
 - two extremes: ripple carry and sum-of-products

Can you see the ripple? How could you get rid of it?

$$c_{1} = b_{0}c_{0} + a_{0}c_{0} + a_{0}b_{0}$$

$$c_{2} = b_{1}c_{1} + a_{1}c_{1} + a_{1}b_{1} \quad c_{2} =$$

$$c_{3} = b_{2}c_{2} + a_{2}c_{2} + a_{2}b_{2} \quad c_{3} =$$

$$c_{4} = b_{3}c_{3} + a_{3}c_{3} + a_{3}b_{3} \quad c_{4} =$$

Not feasible! Why?

Carry-look-ahead adder

- An approach in-between our two extremes
- Motivation:
 - If we didn't know the value of carry-in, what could we do?
 - When would we always generate a carry? $g_i = a_i b_i$
 - When would we propagate the carry? $p_i = a_i + b_i$

$$g_i - a_i b$$

• Did we get rid of the ripple?

 $c_{1} = g_{0} + p_{0}c_{0}$ $c_{2} = g_{1} + p_{1}c_{1} \qquad c_{2} = g_{1} + p_{1}g_{0} + p_{1}p_{0}c_{0}$ $c_{3} = g_{2} + p_{2}c_{2} \qquad c_{3} = g_{2} + p_{2}g_{1} + p_{2}p_{1}g_{0} + p_{2}p_{1}p_{0}c_{0}$ $c_{4} = g_{3} + p_{3}c_{3} \qquad c_{4} = g_{3} + p_{3}g_{2} + p_{3}p_{2}g_{1} + p_{3}p_{2}p_{1}g_{0} + p_{3}p_{2}p_{1}p_{0}c_{0}$

Feasible! Why?

A 4-bit carry look-ahead adder

- Generate g and p term for each bit
- Use g's, p's and carry in to generate all C's
- Also use them to generate block G and P
- CLA principle can be used recursively

Use principle to build bigger adders

- A 16 bit adder uses four 4-bit adders
- It takes block g and p terms and cin to generate block carry bits out
- Block carries are used to generate bit carries
 - could use ripple carry of 4-bit CLA adders
 - Better: use the CLA principle again!

Delays in carry look-ahead adders

- 4-Bit case
 - Generation of g and p: 1 gate delay
 - Generation of carries (and G and P): 2 more gate delay
 - Generation of sum: 1 more gate delay
- 16-Bit case
 - Generation of g and p: 1 gate delay
 - Generation of block G and P: 2 more gate delay
 - Generation of block carries: 2 more gate delay
 - Generation of bit carries: 2 more gate delay
 - Generation of sum: 1 more gate delay
- 64-Bit case
 - 12 gate delays

Multiplication

- More complicated than addition
 - accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on grade school algorithm

01010010 (multiplicand) \underline{x} 01101101 (multiplier)

- Negative numbers: convert and multiply
- Use other better techniques like Booth's encoding

Multiplication

01010010	(multiplicand)
<u>x01101101</u>	(multiplier)
0000000	
	<u>x1</u>
01010010	
00000000	x 0
001010010	
0101001000	<u>x1</u>
0110011010	
01010010000	<u>x1</u>
10000101010	
0000000000000	x 0
010000101010	
010100100000	x1
0111001101010	
0101001000000	x1
10001011101010	
000000000000000000000000000000000000000	x 0
0010001011101010	

01010010 (multiplicand)
x01101101 (multiplier)
00000000	
01010010	x1
01010010	
<u>0000000000000000000000000000000000000</u>	x 0
001010010)
<u>0101001000</u>) x1
011001101	LO
<u>0101001000</u>	00 x1
100001010	010
<u>0000000000000000000000000000000000000</u>	00 x0
010000101	L010
<u>0101001000</u>	0000 x1
011100110	01010
<u>0101001000</u>	00000 x1
100010111	L01010
<u>0000000000000000000000000000000000000</u>	000000 x0
00100010111	L01010

Multiplication: Implementation

Itera-	multi-	Orignal algorithm	
tion	plicand	Step	Product
0	0010	Initial values	0000 0110
1	0010	$1:0 \Rightarrow$ no operation	0000 0110
	0010	2: Shift right Product	0000 0011
2	0010	$1a:1 \Rightarrow prod = Prod + Mcand$	0010 0011
	0010	2: Shift right Product	0001 0001
3	0010	$1a:1 \Rightarrow prod = Prod + Mcand$	0011 0001
	0010	2: Shift right Product	0001 1000
4	0010	$1:0 \Rightarrow$ no operation	0001 1000
	0010	2: Shift right Product	0000 1100 2

Signed Multiplication

- Let Multiplier be Q[n-1:0], multiplicand be M[n-1:0]
- Let F = 0 (shift flag)
- Let result A[n-1:0] = 0....00
- For n-1 steps do
 - A[n-1:0] = A[n-1:0] + M[n-1:0] x Q[0] /* add partial product */
 - F<= F .or. (M[n-1] .and. Q[0]) /* determine shift bit */
 - Shift A and Q with F, i.e.,
 - A[n-2:0] = A[n-1:1]; A[n-1]=F; Q[n-1]=A[0]; Q[n-2:0]=Q[n-1:1]
- Do the correction step
 - A[n-1:0] = A[n-1:0] M[n-1:0] x Q[0] /* subtract partial product */
 - Shift A and Q while retaining A[n-1]
 - This works in all cases excepts when both operands are 10..00

Booth's Encoding

- Numbers can be represented using three symbols, 1, 0, and -1
- Let us consider -1 in 8 bits
 - One representation is 11111111
 - Another possible one 0000000-1
- Another example +14
 - One representation is 00001110
 - Another possible one 000100-10
- We do not explicitly store the sequence
- Look for transition from previous bit to next bit
 - 0 to 0 is 0; 0 to 1 is -1; 1 to 1 is 0; and 1 to 0 is 1
- Multiplication by 1, 0, and -1 can be easily done
- Add all partial results to get the final answer

Using Booth's Encoding for Multiplication

- Convert a binary string in Booth's encoded string
- Multiply by two bits at a time
- For n bit by n-bit multiplication, n/2 partial product
- Partial products are signed and obtained by multiplying the multiplicand by 0, +1, -1, +2, and -2 (all achieved by shift)
- Add partial products to obtain the final result
- Example, multiply 0111 (+7) by 1010 (-6)
- Booths encoding of 1010 is -1 +1 -1 0
- With 2-bit groupings, multiplication needs to be carried by -1 and -2

•

 1
 1
 1
 0
 0
 1
 0
 (multiplication by -2)

 1
 1
 0
 0
 1
 0
 0
 (multiplication by -1 and shift by 2 positions)

• Add the two partial products to get 11010110 (-42) as result

Itera-	multi-	Booth's algorithm	
tion	plicand	Step	Product
0	0010	Initial values	0000 1101 0
1	0010	1c: $10 \Rightarrow \text{prod} = \text{Prod} - \text{Mcand}$	1110 1101 0
	0010	2: Shift right Product	1111 0110 1
2	0010	1b: 01 \Rightarrow prod = Prod + Mcand	0001 0110 1
	0010	2: Shift right Product	0000 1011 0
3	0010	1c: $10 \Rightarrow \text{prod} = \text{Prod} - \text{Mcand}$	1110 1011 0
	0010	2: Shift right Product	1111 0101 1
4	0010	1d: 11 \Rightarrow no operation	1111 0101 1
	0010	2: Shift right Product	1111 1010 1

Carry-Save Addition

- Consider adding six set of numbers (4 bits each in the example)
- The numbers are 1001, 0110, 1111, 0111, 1010, 0110 (all positive)
- One way is to add them pair wise, getting three results, and then adding them again

• Other method is add them three at a time by saving carry

Division

- Even more complicated
 - can be accomplished via shifting and addition/subtraction
- More time and more area
- We will look at 3 versions based on grade school algorithm

0011 0010 0010 (Dividend)

- Negative numbers: Even more difficult
- There are better techniques, we won't look at them

Division

Restoring Division

Iteration	Divisor	Divide algorithm	
		Step	Remainder
0	0010	Initial values	0000 0111
	0010	Shift Rem left 1	0000 1110
1	0010	2: Rem = Rem - Div	1110 1110
1	0010	$3b: \operatorname{Rem} < 0 \Longrightarrow + \operatorname{Div}, \operatorname{sll} R, R0 = 0$	0001 1100
2	0010	2: Rem = Rem - Div	1111 1100
	0010	$3b: \operatorname{Rem} < 0 \Longrightarrow + \operatorname{Div}, \operatorname{sll} \mathbf{R}, \mathbf{R}0 = 0$	0011 1000
3	0010	2: Rem = Rem - Div	0001 1000
	0010	$3a: \text{Rem} \ge 0 \Rightarrow \text{sll } R, R0 = 1$	0011 0001
4	0010	2: Rem = Rem - Div	0001 0001
	0010	$3a: \text{Rem} \ge 0 \implies \text{sll } R, R0 = 1$	0010 0011
Done	0010	shift left half of Rem right 1	0001 0011

Non-Restoring Division

Iteration	Divisor	Divide algorithm	
		Step	Remainder
0	0010	Initial values	0000 1110
	0010	1: Rem = Rem - Div	1110 1110
1	0010	2b: Rem $< 0 \Rightarrow$,sll R, R0 = 0	1101 1100
	0010	3b: Rem = Rem + Div	1111 1100
2	0010	2b: Rem $< 0 \Rightarrow$ sll R, R0 = 0	1111 1000
	0010	3b: Rem = Rem + Div	0001 1000
3	0010	2a: Rem > 0 \Rightarrow sll R, R0 = 1	0011 0001
	0010	3a: Rem = Rem - Div	0001 0001
4	0010	2a: Rem > 0 \Rightarrow sll R, R0 = 1	0010 0011
Done	0010	shift left half of Rem right 1	0001 0011