
1

• Instructions are bits
• Programs are stored in memory

— to be read or written just like data

•

• Fetch & Execute Cycle
– Instructions are fetched and put into a special register
– Bits in the register "control" the subsequent actions
– Fetch the “next” instruction and continue

Processor Memory

memory for data, programs,
compilers, editors, etc.

Stored Program Concept

2

Instructions:

• Language of the Machine
• More primitive than higher level languages

e.g., no sophisticated control flow
• Very restrictive

e.g., MIPS Arithmetic Instructions

• We’ll be working with the MIPS instruction set architecture
– similar to other architectures developed since the 1980's

3

Architecture Specification

• Data types:
– bit, byte, bit field, signed/unsigned integers logical, floating

point, character
• Operations:

– data movement, arithmetic, logical, shift/rotate, conversion,
input/output, control, and system calls

• # of operands:
– 3, 2, 1, or 0 operands

• Registers:
– integer, floating point, control

• Instruction representation as bit strings

4

Characteristics of Instruction Set

• Complete
– Can be used for a variety of application

• Efficient
– Useful in code generation

• Regular
– Expected instruction should exist

• Compatible
– Programs written for previous versions of machines need it

• Primitive
– Basic operations

• Simple
– Easy to implement

• Smaller
– Implementation

5

Example of multiple operands

• Instructions may have 3, 2, 1, or 0 operands
• Number of operands may affect instruction length
• Operand order is fixed (destination first, but need not that way)

add $s0, $s1, $s2 ; Add $s2 and $s1 and store result in $s0

 add $s0, $s1 ; Add $s1 and $s0 and store result in $s0

 add $s0 ; Add contents of a fixed location to $s0

 add ; Add two fixed locations and store result

6

Where operands are stored

• Memory locations
– Instruction include address of location

• Registers
– Instruction include register number

• Stack location
– Instruction opcode implies that the operand is in stack

• Fixed register
– Like accumulator, or depends on inst
– Hi and Lo register in MIPS

• Fixed location
– Default operands like interrupt vectors

7

Addressing

• Memory address for load and store has two parts
– A register whose content are known
– An offset stored in 16 bits

• The offset can be positive or negative
– It is written in terms of number of bytes
– It is but in instruction in terms of number of words
– 32 byte offset is written as 32 but stored as 8

• Address is content of register + offset
• All address has both these components
• If no register needs to be used then use register 0

– Register 0 always stores value 0
• If no offset, then offset is 0

8

• Instructions, like registers and words of data, are also 32 bits long
– Example: add $t0, $s1, $s2
– registers have numbers, $t0=9, $s1=17, $s2=18

• Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

Machine Language

9

• Consider the load-word and store-word instructions,
– What would the regularity principle have us do?
– New principle: Good design demands a compromise

• Introduce a new type of instruction format
– I-type for data transfer instructions
– other format was R-type for register

• Example: lw $t0, 32($s2)

35 18 9 32

op rs rt 16 bit number

• Where's the compromise?

Machine Language

10

• Decision making instructions
– alter the control flow,
– i.e., change the "next" instruction to be executed

• MIPS conditional branch instructions:

bne $t0, $t1, Label
beq $t0, $t1, Label

• Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label:

Control

11

• A simple conditional execution
• Depending on i==j or i!=j, result is different

Conditional Execution

12

• We have: beq, bne, what about Branch-if-less-than?
• New instruction:

if $s1 < $s2 then
$t0 = 1

slt $t0, $s1, $s2 else
$t0 = 0

• Can use this instruction to build "blt $s1, $s2, Label"
— can now build general control structures

• Note that the assembler needs a register to do this,
— there are policy of use conventions for registers

Control Flow

13

• Small constants are used quite frequently (50% of operands)
e.g., A = A + 5;

B = B + 1;
C = C - 18;

• Solutions? Why not?
– put 'typical constants' in memory and load them.
– create hard-wired registers (like $zero) for constants like one.

• MIPS Instructions:

addi $29, $29, 4
slti $8, $18, 10
andi $29, $29, 6
ori $29, $29, 4

• How do we make this work?

Constants

14

• simple instructions all 32 bits wide
• very structured, no unnecessary baggage
• only three instruction formats

• rely on compiler to achieve performance
— what are the compiler's goals?

• help compiler where we can

op rs rt rd shamt funct
op rs rt 16 bit address
op 26 bit address

R
I
J

Overview of MIPS

15

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 ° $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label

• Formats:

• Addresses are not 32 bits
— How do we handle this with load and store instructions?

op rs rt 16 bit address
op 26 bit address

I
J

Addresses in Branches and Jumps

16

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4°$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

• Jump instructions just use high order bits of PC
– address boundaries of 256 MB

op rs rt 16 bit addressI

Address Handling

17

MIPS Instruction Format

31 26 25 21 20 16 15 11 10 6 5 0

JUMP JUMP ADDRESS

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2BEQ/BNE/J BRANCH ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2SW STORE ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2LW LOAD ADDRESS OFFSET

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2 DSTR-TYPE SHIFT AMOUNT ADD/AND/OR/SLT

31 26 25 21 20 16 15 11 10 6 5 0

REG 1 REG 2I-TYPE IMMEDIATE DATA

18

• 16-bit data path (can be 4, 8, 12, 16, 24, 32)
• 16-bit instruction (can be any number of them)
• 16-bit PC (can be 16, 24, 32 bits)
• 16 registers (can be 1, 4, 8, 16, 32)
• With m register, log m bits for each register
• Offset depends on expected offset from registers
• Branch offset depends on expected jump address
• Many compromise are made based on number of bits in instruction

Our Example Machine Specification

19

• LW R2, #v(R1) ; Load memory from address (R1) + v
• SW R2, #v(R1) ; Store memory to address (R1) + v
• R-Type – OPER R3, R2, R1 ; Perform R3 ß R2 OP R1

– Five operations ADD, AND, OR, SLT, SUB
• I-Type – OPER R2, R1, V ; Perform R2 ß R1 OP V

– Four operation ADDI, ANDI, ORI, SLTI
• B-Type – BC R2, R1, V; Branch if condition met to address PC+V

– Two operation BNE, BEQ
• Shift class – SHIFT TYPE R2, R1 ; Shift R1 of type and result to R2

– One operation
• Jump Class -- JAL and JR (JAL can be used for Jump)

– What are th implications of J vs JAL
– Two instructions

Instruction

20

• LW/SW/BC – Requires opcode, R2, R1, and V values
• R-Type – Requires opcode, R3, R2, and R1 values
• I-Type – Requires opcode, R2, R1, and V values
• Shift class – Requires opcode, R2, R1, and shift type value
• JAL requires opcode and jump address
• JR requires opcode and register address
• Opcode – can be fixed number or variable number of bits
• Register address – 4 bits if 16 registers
• How many bits in V?
• How many bits in shift type?

– 4 for 16 types, assume one bit shift at a time
• How many bits in jump address?

Instruction Encoding

21

• Two fields Opcode
– Class of function and function in that class, may require more

bits as in each class functions needs to be encoded
• One level opcode

– In our example it is more optimal, 16 op codes are sufficient
• Each register takes 4 bits to encode
• Shift type requires four bits
• To pack instructions in 16 bits

– V is 4 bits
– Branch offset 4 bits
– How many bits in jump address?

• Only 12 bits jump address required

Encoding Selection

22

• Only 4 bit immediate value
– It is ok as constants are usually small

• Only 4-bit LW/SW address offset
– This is real small
– Good for small programs

• 12-bit jump address
– Not a real limitation

• Branch offset 4 bits
– Has constraints, but can be managed with jump
– Depends on types of program

• Instructions are few
– It is a quite a complete instruction set

• The instruction set is slightly redundant

Trade Offs

23

Instruction Format

15 12 11 8 7 4 3 0

REG 3 REG 2R-TYPE REG 1

15 12 11 8 7 4 3 0

IMMED REG 2I-TYPE REG 1

15 12 11 8 7 4 3 0

OFFSET REG 2LW/SW/BNE/BEQ REG 1

15 12 11 8 7 4 3 0

TYPE REG 2SHIFT REG 1

15 12 11 8 7 4 3 0

Not Used Not UsedJR REG 1

15 12 11 8 7 4 3 0

JUMP ADDRESSJAL

24

Operation for Each Instruction

LW:

1. READ INST

2. READ REG 1

READ REG 2

3. ADD REG 1 +
OFFSET

4. READ MEM

5. WRITE REG2

SW:

1. READ INST

2. READ REG 1

READ REG 2

3. ADD REG 1 +
OFFSET

4. WRITE MEM

5.

R/I/S-Type:

1. READ INST

2. READ REG 1

READ REG 2

3. OPERATE on
REG 1 & REG 2

4.

5. WRITE DST

BR-Type:

1. READ INST

2. READ REG 1

READ REG 2

3. SUB REG 2
from REG 1

4.

5.

JMP-Type:

1. READ

INST

2.

3.

4.

5.

