Other Issues

- support for procedures (Refer to section 3.6), stacks, frames, recursion
- manipulating strings and pointers
- Interrupts, exceptions, system calls and conventions
- Register use convention

<table>
<thead>
<tr>
<th>Name</th>
<th>Register number</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>$zero</td>
<td>0</td>
<td>the constant value 0</td>
</tr>
<tr>
<td>$v0-$v1</td>
<td>2-3</td>
<td>values for results and expression evaluation</td>
</tr>
<tr>
<td>$a0-$a3</td>
<td>4-7</td>
<td>arguments</td>
</tr>
<tr>
<td>$t0-$t7</td>
<td>8-15</td>
<td>temporaries</td>
</tr>
<tr>
<td>$s0-$s7</td>
<td>16-23</td>
<td>saved</td>
</tr>
<tr>
<td>$t8-$t9</td>
<td>24-25</td>
<td>more temporaries</td>
</tr>
<tr>
<td>$gp</td>
<td>28</td>
<td>global pointer</td>
</tr>
<tr>
<td>$sp</td>
<td>29</td>
<td>stack pointer</td>
</tr>
<tr>
<td>$fp</td>
<td>30</td>
<td>frame pointer</td>
</tr>
<tr>
<td>$ra</td>
<td>31</td>
<td>return address</td>
</tr>
</tbody>
</table>

Stack Manipulation

- Register $29 is used as stack pointer
- Stack grows from high address to low address
- Stack pointer should point to the last filled address
- Once entries are removed, stack pointer should be adjusted

Frame Pointer

- Stores the last address for the last frame
- When completing a subroutine, frame address can be used as the starting stack pointer value

How about larger constants?

- We’d like to be able to load a 32 bit constant into a register
- Must use two instructions, new "load upper immediate" instruction
  ```
  lui $t0, 1010101010101010
  ```
 filled with zeros
- Then must get the lower order bits right, i.e.,
  ```
  ori $t0, $t0, 1010101010101010
  ```

Alternative Architectures

- Design alternative:
 - provide more powerful operations
 - goal is to reduce number of instructions executed
 - danger is a slower cycle time and/or a higher CPI
- Sometimes referred to as “RISC vs. CISC”
 - virtually all new instruction sets since 1982 have been RISC
 - VAX: minimize code size, make assembly language easy
 - instructions from 1 to 54 bytes long!
- We’ll look at PowerPC and 80x86

PowerPC

- Indexed addressing
 - example: 1w $t1,.$a0+$s3 #t1=Memory[$a0+$s3]
 - What do we have to do in MIPS?
- Update addressing
 - update a register as part of load (for marching through arrays)
 - example: 1wu $t0,.4(.$a3) #t0=Memory[.a3+4] ;a3=$a3+4
 - What do we have to do in MIPS?
 - Others:
 - load multiple/store multiple
 - a special counter register “bc Loop”
      ```
      decrement counter, if not 0 goto loop
      ```
80x86

- 1978: The Intel 8086 is announced (16-bit architecture)
- 1980: The 8087 floating point coprocessor is added
- 1982: The 80286 increases address space to 24 bits, +instructions
- 1985: The 80386 extends to 32 bits, new addressing modes
- 1989-1995: The 80486, Pentium, Pentium Pro add a few instructions (mostly designed for higher performance)
- 1997: MMX is added

"This history illustrates the impact of the "golden handcuffs" of compatibility
adding new features as someone might add clothing to a packed bag"

"an architecture that is difficult to explain and impossible to love"

A dominant architecture: 80x86

- Complexity:
 - Instructions from 1 to 17 bytes long
 - One operand must act as both a source and destination
 - One operand can come from memory
 - Complex addressing modes
 - e.g., "base or scaled index with 8 or 32 bit displacement"
- Saving grace:
 - The most frequently used instructions are not too difficult to build
 - Compilers avoid the portions of the architecture that are slow

"what the 80x86 lacks in style is made up in quantity, making it beautiful from the right perspective."

Registers in 80xY86 Architecture

- EAX, EBX, ECX, EDX: General purpose registers
- ES, DS, CS: Segments
- SI, DI: Indirect index registers
- BP: Base pointer
- CS: Code segment
- DS: Data segment
- FS, GS: Additional data segments

Examples of non-numeric instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JNZ</td>
<td>Jump if not zero</td>
</tr>
<tr>
<td>JMP</td>
<td>Jump to memory</td>
</tr>
<tr>
<td>POP EAX</td>
<td>Pop EAX</td>
</tr>
<tr>
<td>ADD EAX, IMM32</td>
<td>Add to EAX</td>
</tr>
<tr>
<td>TEST EDX, 64</td>
<td>Test condition code (flags) with EDX & 65</td>
</tr>
<tr>
<td>MOVEL</td>
<td>Move long</td>
</tr>
</tbody>
</table>

Instruction Encoding

- Instruction complexity is only one variable
 - Lower instruction count vs. higher CPI / lower clock rate
- Design Principles:
 - Simplicity favors regularity
 - Smaller is faster
 - Good design demands compromise
 - Make the common case fast
- Instruction set architecture
 - A very important abstraction indeed!
Arithmetic

- Where we've been:
 - Performance (seconds, cycles, instructions)
 - Abstractions:
 - Instruction Set Architecture
 - Assembly Language and Machine Language
- What's up ahead:
 - Implementing the Architecture

Numbers

- Bits are just bits (no inherent meaning)
 - conventions define relationship between bits and numbers
- Binary numbers (base 2)
 - 0000 0001 0010 0101 0110 0111 1000 1001...
 - decimal: 0...2^n-1
- Of course it gets more complicated:
 - numbers are finite (overflow)
 - fractions and real numbers
 - e.g., no MIPS sub instruction; addi can add a negative number
- How do we represent negative numbers?
 - i.e., which bit patterns will represent which numbers?

Possible Representations

- Sign Magnitude: One's Complement Two's Complement
 - 000 = +0 000 = +0 000 = +0
 - 001 = +1 001 = +1 001 = +1
 - 010 = +2 010 = +2 010 = +2
 - 011 = +3 011 = +3 011 = +3
 - 100 = -0 100 = -3 100 = -4
 - 101 = -1 101 = -2 101 = -3
 - 110 = -2 110 = -1 110 = -2
 - 111 = -3 111 = -0 111 = -1
- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?

MIPS

- 32 bit signed numbers:
 - 0000 0000 0000 0000 0000 0000 0000 0000 two = 0 ten
 - 0000 0000 0000 0000 0000 0000 0000 0001 two = +1 ten
 - 0000 0000 0000 0000 0000 0000 0000 0010 two = +2 ten
 - ...0111 1111 1111 1111 1111 1111 1111 1101 two = +2,147,483,646 ten
 - 0111 1111 1111 1111 1111 1111 1111 1110 two = +2,147,483,647 ten
 - 1000 0000 0000 0000 0000 0000 0000 0000 two = -2,147,483,648 ten
 - 1000 0000 0000 0000 0000 0000 0000 0001 two = -2,147,483,647 ten
 - 1000 0000 0000 0000 0000 0000 0000 0010 two = -2,147,483,646 ten
 - ...1111 1111 1111 1111 1111 1111 1111 1111 two = -1 ten
- Issues: balance, number of zeros, ease of operations
- Which one is best? Why?

Two's Complement Operations

- Negating a two's complement number: invert all bits and add 1
 - remember: “negate” and “invert” are quite different!
- Converting n bit numbers into numbers with more than n bits:
 - MIPS 16 bit immediate gets converted to 32 bits for arithmetic
 - copy the most significant bit (the sign bit) into the other bits
 - 0010 -> 0000 0010
 - 1010 -> 1111 1010
- “sign extension” (lbu vs. lb)

Addition & Subtraction

- Just like in grade school (carry/borrow 1s)
 - 0111 + 0110 = 1101
 - 0111 + 0110 = 1101
 - 0111 + 0110 = 1101
- Two's complement operations easy
 - subtraction using addition of negative numbers
 - 0111 + 1010
- Overflow (result too large for finite computer word):
 - e.g., adding two n-bit numbers does not yield an n-bit number
 - 0111 + 0001
 - 1000
- Overflow term is somewhat misleading.
 - 1000
 - does not mean a carry “overflowed”
One B Adder

- Takes three input bits and generates two output bits
- Multiple bits can be cascaded

Adder Boolean Algebra

- $A \land B \land C \land S$
- $0 \ 0 \ 0 \ 0 \ 0$
- $0 \ 0 \ 1 \ 0 \ 1$
- $0 \ 1 \ 0 \ 0 \ 1$
- $0 \ 1 \ 0 \ 0 \ 0$
- $1 \ 0 \ 0 \ 0 \ 0$
- $1 \ 0 \ 1 \ 1 \ 0$
- $1 \ 1 \ 0 \ 1 \ 0$
- $1 \ 1 \ 1 \ 1 \ 1$

Detecting Overflow

- No overflow when adding a positive and a negative number
- No overflow when signs are the same for subtraction
- Overflow occurs when the value affects the sign:
 - or, adding two negatives gives a positive
 - or, subtracting a negative from a positive and get a negative
 - or, subtracting a positive from a negative and get a positive
- Consider the operations $A + B$, and $A - B$
 - Can overflow occur if B is 0?
 - Can overflow occur if A is 0?

Effects of Overflow

- An exception (interrupt) occurs
 - Control jumps to predefined address for exception
 - Interrupted address is saved for possible resumption
- Details based on software system / language
 - example: flight control vs. homework assignment
- Don't always want to detect overflow
 - new MIPS instructions: addu, addiu, subu

Real Design

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

An ALU (arithmetic logic unit)

- Let's build an ALU to support the andi and ori instructions
 - we'll just build a 1 bit ALU, and use 32 of them

Possible Implementation (sum-of-products):
Different Implementations

- Not easy to decide the “best” way to build something
 - Don’t want too many inputs to a single gate
 - Don’t want to have to go through too many gates
 - For our purposes, ease of comprehension is important
- Let’s look at a 1-bit ALU for addition:

\[c_{out} = a + b + c_{in} \]
\[sum = a \oplus b \oplus c_{in} \]

- How could we build a 1-bit ALU for addition, and, and or?
- How could we build a 32-bit ALU?

Building a 32 bit ALU

What about subtraction (a – b)?

- Two’s complement approach: just negate b and add.
- How do we negate?
- A very clever solution:

Tailoring the ALU to the MIPS

- Need to support the set-on-less-than instruction (slt)
 - Remember: slt is an arithmetic instruction
 - Produces a 1 if rs < rt and 0 otherwise
 - Use subtraction: (a-b) < 0 implies a < b
- Need to support test for equality (beq $t5, $t6, $t7)
 - Use subtraction: (a-b) = 0 implies a = b

Supporting slt

- Can we figure out the idea?

Test for equality

- Notice control lines:
 - 000 = and
 - 001 = or
 - 010 = add
 - 110 = subtract
 - 111 = slt

(Note: zero is a 1 when the result is zero)