Representation of Logic Values by Voltage Levels

(Positive logic system)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Logic Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Logic value 1</td>
</tr>
<tr>
<td>$V_{I,min}$</td>
<td>Undefined</td>
</tr>
<tr>
<td>$V_{G,min}$</td>
<td>Logic value 0</td>
</tr>
<tr>
<td>V_{SS} (Gnd)</td>
<td></td>
</tr>
</tbody>
</table>

NMOS Transistor as a Switch

• MOSFET: Metal Oxide Semiconductor Field-Effect Transistor
• NMOS: n-channel MOSFET

$x =$ "low" \hspace{1cm} $x =$ "high"

(a) A simple switch controlled by the input x
(b) NMOS transistor
(c) Simplified symbol for an NMOS transistor

PMOS Transistor as a Switch

• PMOS: p-channel MOSFET

$x =$ "high" \hspace{1cm} $x =$ "low"

(a) A switch with the opposite behavior of previous slide
(b) PMOS transistor
(c) Simplified symbol for an PMOS transistor

Structure of a CMOS Circuit

• CMOS: Complementary MOS Technology

PMOS

Pull-up network (PUN)

NMOS

Pull-down network (PDN)

CMOS Realization of a NOT Gate

(a) Circuit
(b) Truth table and transistor states

<table>
<thead>
<tr>
<th>x</th>
<th>T_1</th>
<th>T_2</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>on</td>
<td>off</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>off</td>
<td>on</td>
<td>0</td>
</tr>
</tbody>
</table>

CMOS Realization of a NOR Gate

(a) Circuit
(b) Truth table and transistor states

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>0</td>
</tr>
</tbody>
</table>
CMOS Realization of a NAND Gate

(a) Circuit

(b) Truth table and transistor states

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>on</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>on</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>off</td>
<td>on</td>
<td>off</td>
<td>on</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>off</td>
<td>off</td>
<td>on</td>
<td>on</td>
<td>0</td>
</tr>
</tbody>
</table>

CMOS Realization of a AND Gate

Implement Compound Function Directly

- All variables need to appear in their complemented form.
- PUN can be derived by looking at f directly.
- PDN can be derived by looking at f'.
- Example:
 $f = x_1' + x_2'x_3'$
 $f' = x_1(x_2 + x_3)$

Types of Integrated Circuits (ICs)

- Standard Chips
- Programmable Logic Devices (PLDs):
 - Programmable Logic Array (PLA)
 - Programmable Array Logic (PAL)
 - Complex Programmable Logic Device (CPLD)
 - Field-Programmable Gate Array (FPGA)
- Non-Programmable Devices:
 - Custom Design
 - Standard-Cell Design
 - Application Specific Integrated Circuit (ASIC)
 - Gate-Array Design

Standard Chips

- A collection of specific gates in a chip
- Popular until mid-80s
- 7400-Series Standard Chips
 - 7404 : NOT gates
 - 7408 : AND gates
 - 7432 : OR gates
 - 74244 : Tri-State Buffers

Implementation of $f = x_1x_2 + x_2'x_3$
Programmable Logic Array (PLA)

- Input buffers and inverters
- AND plane
- OR plane
- Programmable connections

Gate-Level Diagram of a PLA

Customary Schematic for PLA

Programmable Array Logic (PAL)

Field-Programmable Gate Array (FPGA)

Lookup Table (LUT)

(a) Circuit for a two-input LUT

(b) $f_1 = x_1 \cdot x_2 + x_1 \cdot x_2$

(c) Storage cell contents in the LUT