Name:
Lab Section:

CprE 288 Fall 2023 – Homework 12
(Not Graded or Collected)

Notes:

· Homework must be typed and submitted as a PDF or Word Document (i.e. .doc or .docx) only.
· If collaborating with others, you must document who you collaborate with, and specify in what way you collaborated (see last page of homework assignment), review the homework policy section of the syllabus: http://class.ece.iastate.edu/cpre288/syllabus.asp for further details.
· Review University policy relating to the integrity of scholarship. See (“Academic Dishonesty”): http://catalog.iastate.edu/academic_conduct/#academicdishonestytext
· Late homework is accepted within two days from the due date. Late penalty is 10% per day. Except on Exam weeks, homework only accepted 1 day late.
· Note: Code that will not compile is a typo. Answering a question as “will not compile” will be marked incorrect. Contact the Professor if you think you have found a typo.
Note: Unless otherwise specified, all problems assume the TM4C123 is being used
Note: Assume 32-bit assembly format/encoding unless otherwise specified.
1) Fill the final vales of the Register file and Data memory after the following assemble code has been executed. Vales in () are the initial values before the assemble code is executed. Show temporary values to help with giving partial credit, and if an entry is unknown after executing the code then leave blank. Part a and part b are independent of each other
a)
MOVW R10, 0xFFF4
MOVT R10, 0xFFFF
LDR R0, [R10], #4
ANDS R0, 0x0077FF
STR R0, [R10, #0]
 Register File Data Memory

	Reg
	Value

	R15
	

	R14
	

	R13
	

	R12
	

	R11
	

	R10
	

	R9
	

	R8
	

	R7
	

	R6
	

	R5
	

	R4
	

	R3
	

	R2
	

	R1
	

	R0
	

	Address
	Value

	0xFFFF_FFFF
	

	0xFFFF_FFFE
	

	0xFFFF_FFFD
	

	0xFFFF_FFFC
	

	0xFFFF_FFFB
	

	0xFFFF_FFFA
	

	0xFFFF_FFF9
	(0xF4)

	0xFFFF_FFF8
	(0x0A)

	0xFFFF_FFF7
	(0x07)

	0xFFFF_FFF6
	(0x03)

	0xFFFF_FFF5
	(0x01)

	0xFFFF_FFF4
	(0x04)

	0xFFFF_FFF3
	(0xC0)

	0xFFFF_FFF2
	(0xFF)

	0xFFFF_FFF1
	

	0xFFFF_FFF0
	

b)

MOVW R9, 0xFFF0
MOVT R9, 0xFFFF
MOVW R6, 0x10

MOVW R7, 0x10

LDR R2, [R9], #4
LDR R3, [R9, #4]
ADDS R2, R9
STR R2, [R9, #4]!
SUBS R6, R7
BEQ my_label

MOVW R6, 0x20

my_label:

MOVW R7, 0x30

 Register File Data Memory

	Address
	Value

	0xFFFF_FFFF
	

	0xFFFF_FFFE
	

	0xFFFF_FFFD
	

	0xFFFF_FFFC
	

	0xFFFF_FFFB
	(0xAA)

	0xFFFF_FFFA
	(0xF7)

	0xFFFF_FFF9
	(0xF4)

	0xFFFF_FFF8
	(0x0A)

	0xFFFF_FFF7
	(0x07)

	0xFFFF_FFF6
	(0x03)

	0xFFFF_FFF5
	(0x01)

	0xFFFF_FFF4
	(0x04)

	0xFFFF_FFF3
	(0xC0)

	0xFFFF_FFF2
	(0xFF)

	0xFFFF_FFF1
	(0x22)

	0xFFFF_FFF0
	(0xCC)

	Reg
	Value

	R15
	

	R14
	

	R13
	

	R12
	

	R11
	

	R10
	

	R9
	

	R8
	

	R7
	

	R6
	

	R5
	

	R4
	

	R3
	

	R2
	

	R1
	

	R0
	

Question 2 (Assembly Practice)
// Variable declaration assumptions

 // Assume the following memory locations:

unsigned char A[5]; // located at 0xFFFF_F800

unsigned char ch1 = 2; // located at 0xFFFF_F900

unsigned char ch2 = 3; // located at 0xFFFF_FA00

unsigned *pch = &ch2; // located at 0xFFFF_FB00

unsigned int a = 0x10FF; // located at 0xFFFF_FC00

unsigned int b = 0x80FF; // located at 0xFFFF_FD00

unsigned int *pint = &b; // located at 0xFFFF_FE00

For the assumptions given for the declared variables, write the assembly code to implement each functionality. Each question is independent.
a. Arithmetic

a = b + 1;

b. Logic
ch1 = ch1 | ch2;

c. Initialize a pointer
pch = &ch1; //Hint: the address of a variable in C is constant

d. Copy variables using a pointer

*pint = b;

e. Set an Array element to a deferenced pointer
A[4] = (*pch) + 1;

f. Multiplication

a = a * b;

Questions 3-7: Implement the following functionality based on the give global variables
unsiged int a = 1024; //a @ 0x1000_0000
unsigned int b = 3300; //b @ 0x1000_0004
unsigned int max; //max @ 0x1000_0008
int c = 288; // c @ 0x1000_000C
int d = 381; // d @ 0x1000_0010
signed char flag; // flag @ 0x1000_0014
unsigned int X[8] = {1, 2, 3, 4, 8, 6, 7, 5}; // X @ 1000_1000
unsigned int Y[8]; // Y @ 1000_2000
3. If-else statement: get the maximum of two numbers
if (a > b)

{

max = a;

}

else

{

max = b;

}

4. Compare a variable with an immediate number.

if(a <= 20)

{

 flag = 0;

}

else

{

 flag = 1;

}
5. If statement with complex condition.

if ((a < b) || (d > c))

{

 flag = 1;
}
6. Copy the contents of the X[] array to the Y[] array. You must use a loop. (for this question, use the fact that each array has 8 elements.)
7. Find out the maximum value among all elements in the X[] array, store the value into “max.” You must use a loop. (again you can use the fact the X[] has 8 elements).
Collaboration Documentation

List the people (First and Last name) you collaborated with: .
For each collaborator, describe the manner in which you collaborated:

1)

2)
