
CprE 288 – Introduction to Embedded Systems
(Output Compare and PWM)

1

Instructors:

Dr. Phillip Jones

QUIZ Rules

http://class.ece.iastate.edu/cpre288 2

• Only 1-side of a page of notes

• Can use a calculator

• Can use a blank sheet to workout problems

• Using any additional material is a 0 for the Quiz

Note: NEVER allowed to use Datasheet or Textbook
for quizzes.

Exam Rules

• Exam Rules:

– Can use textbook, datasheet, 1 page of notes (both sides) 10pt+
font, and calculator allowed

– Electronic textbook and electronic Datasheet is fine.

– Can use a blank sheet to workout problems

– Nothing else can be used or you will receive an F for CPRE 288

http://class.ece.iastate.edu/cpre288 3

Announcements

http://class.ece.iastate.edu/cpre288 4

• Class Project Related:

– Project Demos: During you lab session Prep-week
• 5pts bouns + extra time if demoed the week before Prep-week

• Exam 2: Tuesday Nov 19 (11/19), in class using Canvas

10

Textbook & Data Sheet: Read and ask questions

http://class.ece.iastate.edu/cpre288

• Exam 2 will predominantly consist of questions of the form
– Configure Registers to meet given specifications

• UART, ADC, Input Capture, Output Compare, Timers, Interrupts
• Each device has a section in the Datasheet and Textbook

– Based on a given configuration, answer questions about how the
program will behave
• E.g. How long will something take to occur?
• E.g. How many time a second with something occur?

– Explain why a given configuration is incorrect for implementing a
specified behavior

– Assuming a given configuration, write a short program to
implement a specific behavior

– ADC calculation problem

Overview of Today’s Lecture

• Output Compare and Pulse Wave Modulation (PWM)

– Datasheet: Chapter 11

– Textbook reading: Section 9.1, 9.2

11http://class.ece.iastate.edu/cpre288

OUTPUT COMPARE

http://class.ece.iastate.edu/cpre288 12

Output Compare

Output Compare: specify time at which to generate an event

Allows one to generate (i.e. output) a waveform.

Many applications in microcontroller applications:

– Start analog devices

– Control speed of motors

– Control power output rate

– Communications

– Control servo (e.g. Servo Lab)

Recall, Input Capture: Capture the time of an event

13

Output Compare

• Example: Generate a waveform that is 1-cycle high, 2-cycle low, 3-

cyle high, 1-cycle low, and repeating

14

220 221 222 223 224 225 226 227

1 2 3 1

Counter

Signal

Clock

Output Compare

• Example: Generate a waveform that is 1-cycle high, 2-cycle low, 3-

cyle high, 1-cycle low, and repeating

• Generate output events (transitions) at 220 (current time), 221, 223,

226, 227 and so on with initial state as low

15

220 221 222 223 224 225 226 227

1 2 3 1

Counter

Signal

Clock

16

Servo Control

A servo is a special motor

with built-in position

feedback

– Can stop the shaft at a

given position

– Relatively precise

– Needs calibration

17

Servo Control

Source: Parallax Robotics Student guide, V1.4

The potentiometer plays as position sensor
(see the next two slides)

Servo Control

http://en.wikipedia.org/wik
i/Potentiometer

• Potentiometer: Three-
terminal resistor with a
sliding mid contact

• In the servo, the motor
rotates the shaft that
slides the mid contact

• The voltage at the mid
contact provides
feedback to the power
circuits driving the motor

18

http://en.wikipedia.org/wiki/Potentiometer
http://en.wikipedia.org/wiki/Potentiometer

Servo Control

19

Servo Control

20

(0V)

(0V)

Servo Control

21

(0V)(5V)

(5V)

Servo Control

22

(0V)(5V)

(2.5V)

(2.5V)

Servo Control

23

(0V)(5V)

(2.5V)

(2.5V)

Servo Control

24

Control feedback loop:
1) A control pulse is converted to a target voltage
2) If the servo is not at the target angular position, there will be a error

between the target voltage and the position sensor voltage
3) The voltage error is amplified and used to turn motor in the direction that

reduces the voltage error toward zero

(0V)(5V)

(2.5V)

(2.5V)

(0V)

25

Pulse Width Modulation = PWM

Parameters: Period and Pulse Width

Duty Cycle = Pulse width / Period

Programming: How to set the two parameters?

• Textbook: 9.2.3.7 PWM Mode: Steps 1-5

pulse-width

Period

26

Using PWM to Generate a Voltage Level

27

Using PWM to Generate a Voltage Level

28

Using PWM to Generate a Voltage Level

29

Using PWM to Generate a Voltage Level

30

TM4C123G Timer module

6 general purpose 16/32-bit timer blocks

• 11 timer modes

• 2 independent matching units per block (A / B)

• Pulse width modulation output

• Many other features

***Note that there is also a separate PWM module (Not used in CPRE 288)

31

Timer Block Diagram

Pg 705 of datasheet

Microcontroller / System-on-Chip (SoC)

http://class.ece.iastate.edu/cpre288 32

CPU
Program
Memory

Microcontroller Outside
World

NVIC
UART

ADC

Timers

CFG|DATA|STATUS

CFG|DATA|STATUS

CFG|DATA|STATUS

GPIO

GPIO_DATA

Po
rt X

 (8
-b

its)

7
6
5
4

3
2
1
0

DevicesInterrupts

AFSEL

PCTL

0
1

0

X

Y

Data
Memory

Microcontroller / System-on-Chip (SoC)

http://class.ece.iastate.edu/cpre288 33

CPU
Program
Memory

Microcontroller Outside
World

NVIC

GPIO

GPIO_DATA

Po
rt X

 (8
-b

its)

7
6
5
4

3
2
1
0

DevicesInterrupts

Data
Memory

Timers

CFG|DATA|STATUS

Microcontroller / System-on-Chip (SoC)

http://class.ece.iastate.edu/cpre288 34

CPU
Program
Memory

Microcontroller Outside
World

NVIC

Timers

CFG|DATA|STATUS

GPIO

GPIO_DATA

Po
rt X

 (8
-b

its)

7
6
5
4

3
2
1
0

DevicesInterrupts

Data
Memory

Output Compare: Design Principle

Time is important!

Microcontroller approaches for generate events at precise time intervals?

• Use time delay functions?

• Use interrupts?

– May be accurate enough depending on application needs

35

Microcontroller / System-on-Chip (SoC)

http://class.ece.iastate.edu/cpre288 36

CPU
Program
Memory

Microcontroller Outside
World

NVIC

Timers

CFG|DATA|STATUS

GPIO

GPIO_DATA

Po
rt X

 (8
-b

its)

7
6
5
4

3
2
1
0

DevicesInterrupts

Data
Memory

wait_us(x)

{

 done=GPTMTnR + x;

 while(GPTMTnR < done)

 {

 }

}

Output Compare: Design Principle

Time is important!

Microcontroller approaches for generate events at precise time intervals?

• Use time delay functions?

– May be accurate enough depending on application needs

– CPU cannot do anything else, interrupts may delay

• Use interrupts?

37

Microcontroller / System-on-Chip (SoC)

http://class.ece.iastate.edu/cpre288 38

CPU
Program
Memory

Microcontroller Outside
World

NVIC

Timers

CFG|DATA|STATUS

GPIO

GPIO_DATA

Po
rt X

 (8
-b

its)

7
6
5
4

3
2
1
0

DevicesInterrupts

Data
Memory

ISR:

{

 PB3 = ~PB3;

 MATCH = MATCH + X

}

Output Compare: Design Principle

Time is important!

Microcontroller approaches for generate events at precise time intervals?

• Use time delay functions?

– May be accurate enough depending on application needs

– CPU cannot do anything else, interrupts may delay

• Use interrupts?

– May be accurate enough depending on application needs

o Potential sources of issues: i) interrupt overhead, ii) possible

delays from other interrupts.

39

40

Output Compare: Design Principle

When the Timer equals the user-defined Match value the output
compare unit can cause an action (e.g. interrupt, and/or output event).

GPTMTnR

GPTMTnMATCHR

Edge
Generator

GPTMTnRn: Timer/Counter

GPTMTnMATCHR : Output Compare Match Register

SW sets

Raw Interrupt
=

Output Compare: General Purpose Waveform

How to generate an output waveform of arbitrary shape?

Example: Generate a waveform that is high for 100 cycles, low for

200 cycles, high for 300 cycles, low for 100 cycles. Then repeats.

41

100 200 300 100

Output Compare: General Purpose Waveform

42

CPU toggle output:
CPU Interrupt processing:

CPU Foreground Task:

Approach: Preset the time of each event

Set time for next match interrupt:

0

Desired output

waveform

Counter 100 300 600 700

CPU Task

100

200

300

100

Microcontroller / System-on-Chip (SoC)

http://class.ece.iastate.edu/cpre288 43

CPU
Program
Memory

Microcontroller Outside
World

NVIC

Timers

CFG|DATA|STATUS

GPIO

GPIO_DATA

Po
rt X

 (8
-b

its)

7
6
5
4

3
2
1
0

DevicesInterrupts

Data
Memory

ISR:

{

 PB3 = ~PB3;

 MATCH = MATCH + X

}

Microcontroller / System-on-Chip (SoC)

http://class.ece.iastate.edu/cpre288 44

CPU
Program
Memory

Microcontroller Outside
World

NVIC

Timers

CFG|DATA|STATUS

GPIO

GPIO_DATA

Po
rt X

 (8
-b

its)

7
6
5
4

3
2
1
0

DevicesInterrupts

Data
Memory

TM4C123G 16/32-bit Timer/Counter

• Timer 16/32 bit

– two 16bit timers (A & B) or single 32bit (A)

– 6 Channels (0 – 5)

• 11 modes

– One shot

– Periodic

– Periodic Snapshot

– Wait-for-Trigger

– Real-Time Clock

– Input Edge Count

– Input Edge Time

– PWM (one shot or periodic)

– DMA

– Synchronizing GP-Timer Blocks

– Concatenated Modes
45

Servo Lab: Important Timer Modes

• Periodic mode

– Count down to zero from a preset value, or Count up from zero to a value

• Periodic means Timer resets to a preset value after reaching zero
(Count down), or resets to zero after reaching a preset value (Count up)

• One-shot means Timer stops when reaches 0 (Count down), or when
reaches preset value (Count up)

– Can set interrupt to fire when timer reaches end value and/or match value

This mode can generate generic waveforms at the cost of interrupt overhead

46

Servo Lab: Important Timer Modes

• PWM mode (see datasheet table for details)

– 24 bit count-down counter

• Prescale register used to increase size and is not used as prescale divisor

• Timer size = 16-bit main counter + 8-bit extension using the prescale reg

– Allows for creation of PWM waveform

– Timer hardware handles switching output (off/on) for the developer (no
need for interrupts to generate the PWM waveform)

47

Options for Generating a Waveform

• PWM waveform generation (Used for Servo Lab)

– Place Timer in PWM Mode: the Output Compare (OC) hardware
generates a PWM waveform without CPU involvement

– can only easily generate a PWM waveform

– no CPU overhead, since ISRs are not required

– See datasheet (1 pg.) for PWM operation mode details & example

• Generic waveform generation

– use Timer in Periodic Mode,

– ISR sets the next event time in the MATCH, and the output value
in the GPIO DATA register

– can generate any arbitrary digital waveform

– There is CPU overhead for executing the ISRs

48

49

PWM

Two parameters in PWM programming

– Period: by writing a TOP value: lower 16 bits to the Interval Load

Register (ILR), and the upper 8 bits to the Timer Prescale register.

– Pulse width: by writing to the Match Register

How does the Timer hardware work in PWM mode

– GPTMTnR (i.e., Counter) decrements every cycle

– First event occurs when GPTMTnR = GPTMTnMATCHR

– Second event occurs when GPTMTnR is reset (after it reaches 0 and

is reset to TOP (i.e. ILR)).

50

Output Compare: Design Principle

When the Timer equals the user-defined Match value the output
compare unit can cause an action (e.g. interrupt, and/or output event).

GPTMTnR

GPTMTnMATCHR

Edge
Generator

GPTMTnRn: Timer/Counter

GPTMTnMATCHR : Output Compare Match Register

SW sets

Raw Interrupt
=

51

Pulse Width Modulation = PWM

Parameters: Period and Pulse Width

Duty Cycle = Pulse width / Period

Programming: How to set the two parameters?

• Textbook: 9.2.3.7 PWM Mode: Steps 1-5

pulse-width

Period

Servo Lab: PB5

52

Pulse Width Modulation = PWM

Parameters: Period and Pulse Width

Duty Cycle = Pulse width / Period

Programming: How to set the two parameters?

• Textbook: 9.2.3.7 PWM Mode: Steps 1-5

pulse-width

Counter == GPTMTnMATCHR =200-39 = 161

PeriodGPTMTA_IL= 200

GPTMTnR=Counter = 039 ticks

200 ticks

GPTMTnR=Counter = 200

Servo Lab: PB5

0

1

53

54

The Servo input: Periodic digital waveform of pulses

• The pulse width decides the target voltage (a property of the circuit

inside the servo)

• The pulses must be separated by a time between 10ms and 40ms

• How does your program generate the waveform?

• This is a form of periodic PWM waveform: Pulse width = 1.5ms,

pulse period = 21.5ms

55

Servo Control

Servo Control

In the Servo Lab, your program should be able to

1. Send pulses to the servo to make it move

2. Make the servo stop at the center position

3. Make the servo stop at different angles:

 0, 45, 90 (center), 135, 180

56

Servo Control

Use digital waveform to command servo of the target position

If the servo is ideal:

~1ms pulse – clockwise far end

~1.5ms pulse – center position

~2ms pulse – counterclockwise far end

10-40ms PWM period (does not have to be precise)

The actual servos requires calibration

57

58

Servo Control

Programming tasks: Generate a periodic waveform with a certain
pulse width and a fixed period

1.0~2.0ms corresponds to 0~180 degree counterclockwise

Suggested by servo’s document. Again, calibration IS necessary

Options for Generating a Waveform

• PWM waveform generation (Used for Servo Lab)

– Place Timer in PWM Mode: the Output Compare (OC) hardware
generates a PWM waveform without CPU involvement

– can only easily generate a PWM waveform

– no CPU overhead, since ISRs are not required

• Generic waveform generation

– use Timer in Periodic Mode,

– ISR sets the next event time in the MATCH, and the output value
in the GPIO DATA register

– can generate any arbitrary digital waveform

– There is CPU overhead for executing the ISRs

63

Microcontroller / System-on-Chip (SoC)

http://class.ece.iastate.edu/cpre288 64

CPU
Program
Memory

Microcontroller Outside
World

NVIC

Timers

CFG|DATA|STATUS

GPIO

GPIO_DATA

Po
rt X

 (8
-b

its)

7
6
5
4

3
2
1
0

DevicesInterrupts

Data
Memory

65

Output Compare: Design Principle

When the Timer equals the user-defined Match value the output
compare unit can cause an action (e.g. interrupt, and/or output event).

GPTMTnR

GPTMTnMATCHR

Edge
Generator

GPTMTnRn: Timer/Counter

GPTMTnMATCHR : Output Compare Match Register

SW sets

Raw Interrupt
=

Output Compare: General Purpose Waveform

How to generate an output waveform of arbitrary shape?

Example: Generate a waveform that is high for 100 cycles, low for

200 cycles, high for 300 cycles, low for 100 cycles. Then repeats.

66

100 200 300 100

Output Compare: General Purpose Waveform

67

CPU toggle output:
CPU Interrupt processing:

CPU Foreground Task:

Approach: Preset the time of each event

Set time for next match interrupt:

0

Desired output

waveform

Counter 100 300 600 700

CPU Task

100

200

300

100

General Purpose Waveform

Example: Use general purpose waveform generation to make a

waveform that is high for M cycles, and low for M cycles

68

GPTMTnV

(Timer/Counter)

0xFFFF

0x0

Waveform Period = 2 × M

Time

General Purpose Waveform

Example: Use general purpose waveform generation to make a

waveform that is high for M cycles, and low for M cycles

69

GPTMTnV

(Timer/Counter)

0xFFFF

0x0

Waveform Period = 2 × M

Time

GPIO pin

output

GPTMTAMATCHR

= GPTMTnV - M

GPTMTAMATCHR -=M
GPTMTAMATCHR -=M

GPTMTAMATCHR -=M
GPTMTAMATCHR -=M

Use Periodic Timer Mode to generate a 50% duty cycle
waveform, with a Period of 2*M timer cycles, using Timer0A
in count down mode. Assume the Timer, GPIO (PF0), and NVIC
initialized already

TIMER0A_Handler(void)
{
 // 1) Check that a Match interrupt occurred
 if(TIMER0_MIS_R & TIMER_MIS_TAMMIS)
 {
 // 2) Clear interrupt flag
 TIMER0_ICR = TIMER0_ICR | TIMER_MIS_TAMMIS;

 // 3) Set next match time
 TIMER0_TAMATCHR_R = TIMER0_TAMATCHR_R - M;

 // 4) Toggle output wire
 if(GPIO_PORTF_DATA_R & 0x01)
 {
 GPIO_PORTF_DATA_R &= ~0x01;//set low
 }
 else
 {
 GPIO_PORTF_DATA_R |= 0x01;//set high
 }
 }
}

70

Programming Example: General Purpose Waveform

Use Periodic Timer Mode to generate a 50% duty cycle
waveform, with a Period of 2*M timer cycles, using Timer0A
in count down mode. Assume the Timer, GPIO (PF0), and NVIC
initialized already

TIMER0A_Handler(void)
{
 // 1) Check that a Match interrupt occurred
 if(TIMER0_MIS_R & TIMER_MIS_TAMMIS)
 {
 // 2) Clear interrupt flag
 TIMER0_ICR = TIMER0_ICR | TIMER_MIS_TAMMIS;

 // 3) Set next match time
 TIMER0_TAMATCHR_R = TIMER0_TAMATCHR_R - M;

 // 4) Toggle output wire
 GPIO_PORTF_DATA_R = GPIO_PORTF_DATA_R ^ 0x01;

 }
}

71

Programming Example: General Purpose Waveform

Programming Example: General Purpose Waveform

Generate a periodic waveform repeating the following:

100-cycle low, 100 high, 200 low, 200 high, 300 low, 300 high.

• Assume: 1) Timer already configured in count-down periodic mode,

2) Assumer Port F wire 0 will be the output and is already properly

configured, 3) Assume MATCH interrupts have already been enabled,

and the NVIC has been configured.

• Give code to place in the Timer ISR

72

Programming Example: General Purpose Waveform

73

volatile unsigned int count[6]={100, 100, 200,200, 300, 300};

int pos = 0;

//Assume output is initially high
TIMER0A_Handler(void)
{
 // 1) Check that a Match interrupt occurred
 if(TIMER0_MIS_R & TIMER_MIS_TAMMIS)
 {
 // 2) Clear interrupt flag
 TIMER0_ICR = TIMER0_ICR | TIMER_MIS_TAMMIS;

 // 3) Set next match time
 TIMER0_TAMATCHR_R = TIMER0_TAMATCHR_R - count[pos];
 pos =(pos+1) % 6;

 // 4) Toggle output wire
 GPIO_PORTF_DATA_R = GPIO_PORTF_DATA_R ^ 0x01;
 }
}

Use Periodic Timer Mode to generate the specified waveform. Using
Timer0A in count down mode. Assume the Timer, GPIO(PF0), and NVIC
initialized already.

100 100 200 200 300 300

Programing Example: General Purpose Waveform

Initialize Timer/Counter 0A’s OC unit as periodic for general purpose waveform gen

timer_init(){

//init GPIO, and enable Timer clock, and count-down

...

TIMER0_CTL_R &= ~TIMER_CTL_TAEN; //disable timer0A

TIMER0_CFG_R |= TIMER_CFG_16_BIT; //set to 16bit

TIMER0_TAMR_R = TIMER_TAMR_PERIOD; //set to periodic

TIMER0_TAPR_R = 0; //set timer prescaler

TIMER0_TAILR_R = 0xFFFF; //set period

TIMER0_TAPMR_R = 0; // set match prescaler

TIMER0_TAMATCHR_R = first_match; // set value for initial intpt

TIMER0_ICR_R |= TIMER_IMR_TAMIM; //clear interrupts

TIMER0_IMR_R |= TIMER_IMR_TAMIM; //enable match interrupts

IntRegister(INT_TIMER0A, TIMER0A_Handler); //Bind intrupt handle

// NVIC setup

...

IntMasterEnable(); //enable global interrupts

TIMER0_CTL_R |= TIMER_CTL_TAEN; //enable timer0A

}

74

Review of OC Programming Interface

76

• GPTMCTL – Control

• GPTMCFG – Configuration

• GPTMTnMR – Timer n mode

• GPTMTnPR – Timer n prescale / 8 bits PWM

• GPTMTnILR – Timer n interval load

• GPTMTnPMR – Timer n prescale match

• GPTMTnMATCHR – Timer n match

• GPTMIMR – Interrupt mask

• GPTMRIS – Raw interrupt status

• GPTMICR – Interrupt clear

See page 726 of data sheet for more info

Summary of OC General Purpose Waveform

Good for generating waveforms of any shape

Programming: Use Interrupt to pre-set the timing of the next event

Cons:

– Interrupt overhead can be high

– Cannot generate high-frequency waveforms

– CPU cannot sleep into deep power-saving modes

77

Summary of PWM

Good for generating Pulse Width Modulation waveforms and
Clock waveforms

Two parameters: Pulse Width and Period Length

(they decide the timing of two events)

Programming

– Lower 16bits (15:0) go in the Timers Interval Load register

– Higher 8bits (23:16) go in the Timer Prescale Register

– Match stores (Top - Pulse_Width) for down counter mode

78

PWM: Summary example

Objectives:

• Generate a PWM wave that has a pulse width of 39 ticks and a
period of 200 ticks

• The PWM wave should be generated on PB5 in lab

79

Channel
PB5

pulse-width
39 ticks

Counter == GPTMTnMATCHR =200-39

200 ticks (period)
GPTMTAIL= 200

GPTMTnR=Counter = 0

80

Servo Control

81

Control feedback loop:
1) A control pulse is converted to a target voltage
2) If the servo is not at the target angular position, there will be an error

between the target voltage and the position sensor voltage
3) The voltage error is amplified and used to turn motor in the direction that

reduces the voltage error toward zero

	Slide 1: CprE 288 – Introduction to Embedded Systems (Output Compare and PWM)
	Slide 2: QUIZ Rules
	Slide 3: Exam Rules
	Slide 4: Announcements
	Slide 10: Textbook & Data Sheet: Read and ask questions
	Slide 11: Overview of Today’s Lecture
	Slide 12: OUTPUT COMPARE
	Slide 13: Output Compare
	Slide 14: Output Compare
	Slide 15: Output Compare
	Slide 16: Servo Control
	Slide 17: Servo Control
	Slide 18: Servo Control
	Slide 19: Servo Control
	Slide 20: Servo Control
	Slide 21: Servo Control
	Slide 22: Servo Control
	Slide 23: Servo Control
	Slide 24: Servo Control
	Slide 25: Pulse Width Modulation = PWM
	Slide 26: Using PWM to Generate a Voltage Level
	Slide 27: Using PWM to Generate a Voltage Level
	Slide 28: Using PWM to Generate a Voltage Level
	Slide 29: Using PWM to Generate a Voltage Level
	Slide 30: TM4C123G Timer module
	Slide 31
	Slide 32: Microcontroller / System-on-Chip (SoC)
	Slide 33: Microcontroller / System-on-Chip (SoC)
	Slide 34: Microcontroller / System-on-Chip (SoC)
	Slide 35: Output Compare: Design Principle
	Slide 36: Microcontroller / System-on-Chip (SoC)
	Slide 37: Output Compare: Design Principle
	Slide 38: Microcontroller / System-on-Chip (SoC)
	Slide 39: Output Compare: Design Principle
	Slide 40: Output Compare: Design Principle
	Slide 41: Output Compare: General Purpose Waveform
	Slide 42: Output Compare: General Purpose Waveform
	Slide 43: Microcontroller / System-on-Chip (SoC)
	Slide 44: Microcontroller / System-on-Chip (SoC)
	Slide 45: TM4C123G 16/32-bit Timer/Counter
	Slide 46: Servo Lab: Important Timer Modes
	Slide 47: Servo Lab: Important Timer Modes
	Slide 48: Options for Generating a Waveform
	Slide 49: PWM
	Slide 50: Output Compare: Design Principle
	Slide 51: Pulse Width Modulation = PWM
	Slide 52: Pulse Width Modulation = PWM
	Slide 53
	Slide 54
	Slide 55: Servo Control
	Slide 56: Servo Control
	Slide 57: Servo Control
	Slide 58: Servo Control
	Slide 63: Options for Generating a Waveform
	Slide 64: Microcontroller / System-on-Chip (SoC)
	Slide 65: Output Compare: Design Principle
	Slide 66: Output Compare: General Purpose Waveform
	Slide 67: Output Compare: General Purpose Waveform
	Slide 68: General Purpose Waveform
	Slide 69: General Purpose Waveform
	Slide 70
	Slide 71
	Slide 72: Programming Example: General Purpose Waveform
	Slide 73: Programming Example: General Purpose Waveform
	Slide 74: Programing Example: General Purpose Waveform
	Slide 76: Review of OC Programming Interface
	Slide 77: Summary of OC General Purpose Waveform
	Slide 78: Summary of PWM
	Slide 79: PWM: Summary example
	Slide 80
	Slide 81: Servo Control

