
CprE 288 – Introduction to Embedded Systems

1

Instructors

Swamy Ponpandi

http://class.ece.iastate.edu/cpre288

Announcements

• Final Project: Have project groups formed by Friday
(Mar 24, 2017), 4.00 PM

– Each Final Project teams will be composed of two regular Lab
teams combined.

– Give or E-mail your lab section TA, the following,

a) a list of your team members.

b) a creative team name (be mindful of university policies).

2http://class.ece.iastate.edu/cpre288

Announcement

• Lab 9: Object Detection – 2 week lab

4

Lecture Overview

• Suggested Programming Style for Lab Project

5http://class.ece.iastate.edu/cpre288

Lab 9: Object Counting and Size Discrimination

How do you distinguish two objects of different size?

6

Scanned Results by IR Censor

7

Scanned Result by Ping))) Sensor

8

Data Analysis

How can your program identify and distinguish different
objects from the following raw data?

Degrees IR Distance (cm) Sonar Distance (cm)

0 120 324

2 123 330

4 119 363

6 40 40

8 40 40

10 40 41

… (more)

9

Data Analysis

Step 1: Scan the array to identify gaps, convert them to
angular sizes

• What’s your algorithm?

Step 2: For each object, convert its distance and angular
size into linear size (width)

• What’s your mathematic formula?

10

Suggested Programming Style for Lab Project

References and Readings

• GNU Coding Standards. Free Software Foundation

• Proper Linux Kernel Coding Style. Greg Kroah-Hartman,
Linux Journal, July 01, 2002

• Recommended C Style and Coding Standards. L. W.
Cannon et al.

• Indent Style, Wikipedia

Credit: Jafar M. Al-Kofahi made contribution to an early version of
288 Lab Project Coding Style

11

http://www.gnu.org/prep/standards/
http://www.linuxjournal.com/article/5780?page=0,0
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.3110
http://en.wikipedia.org/wiki/Indent_style

Suggested Programming Style for Lab Project

You are suggested to use the Programming style
presented in this lecture

• It’s a simplified version of GNU Coding Standards, with
elements from the other references

• You may choose some variants, if with good reason

ALL partners of the same project team must use the
same style with the same variants

12

http://www.gnu.org/prep/standards/

Why do we need it?

From “Recommended C Style and Coding Standards”

13

Why do we need it?

Credit: Jafar M. Al-Kofahi
14

Why do we need it?

Credit: Jafar M. Al-Kofahi
15

Why do we need it?

We need a good coding style for many reasons

• Understand the code written by ourselves after some
time

• Let others understand the code

• Reduce the number of bugs and the debugging time

• Overall, reduce the time spent on 288 Lab Project

16

C Programming Style

From GNU Coding Standards, Ch. 5, “Making the Best Use
of C”

• Formatting: Format your source code

• Comments: Commenting your work

• Syntactic Convention: Clean use of C Constructs

• Names: Naming variables, functions, and files

17

Program File Layout

Suggested layout for .c files

1. A prologue that tells what is in the file

2. Any header file includes

3. Any defines and typedefs

4. Global data declarations

5. Functions, in some meaningful order

More details: Recommended C Style and Coding
Standards, Sec 2.2 Program files

18

Program File Layout: Example

/*

* ping.c: Ping))) sensor related functions

*/

#include <avr/io.h>

#include <avr/interrupt.h>

#include “servo.h”

// Number of clock cycles for 1-meter distance (single-trip) under prescalar 256

#define TICKS_PER_METER 735

volatile unsigned falling_time; // captured time of falling edge

volatile unsigned rising_time; // captured time of rising edge

unsigned ping_read()

{

…

19

Prologue

Includes

Defines and defs

Global variables

Functions

Header File Layouts

Use the same layout for .c program files, for declarations
visible to outside

Use C Macro def to avoid nested includes
#ifndef EXAMPLE_H

#define EXAMPLE_H

... /* body of example.h file */

#endif /* EXAMPLE_H */

Use extern for global variable visible to outside
extern int sound_speed;

20

Format Function

GNU Function layout

– Brace starts at column 1 of a new line

– Function name starts at column 1 of a new line

static char *

concat (char *s1, char *s2)

{

…

}

21

Format Expression

Break an long expression: Split it before an operator and
align the two parts properly
if (foo_this_is_long && bar > win (x, y, z)

&& remaining_condition)

Extra parenthesis: Add extra parentheses if they can make
expressions clearer
max = (x > y) ? x : y;

22

Indent Style: GNU

int

sample_func()

{

while (x == y)

{

something ();

if (some_error)

do_correct ();

else

cont_as_usual ();

}

finalthing ();

}

GNU indent style

• The opening brace
occupies a line

• The opening brace is
indented by 2 spaces

• The next statement is
indented by another 2
spaces

23

Indent Style: K&R

int sample_func()

{

while (x == y) {

something();

if (some_error)

do_correct();

else

cont_as_usual();

}

finalthing();

}

K&R indent style

• The opening brace of a
control body does NOT
take a line

• The next statement is
indented by 4 spaces

The K&R Book: The C
Programming Language,
Brian W. Kernighan and
Dennis M. Ritchie

24

Indent Style: Allman

int sample_func()

{

while (x == y)

{

something();

if (some_error)

do_correct();

else

cont_as_usual();

}

finalthing();

}

Allman indent style (ANSI
style)

• The opening brace of a
control body takes a line

• The opening brace is
indented by 0 space

• The next statement is
indented by 4 spaces

25

Indent Style: Simple Control Statements

GNU:

if (x == y)

do_something ();

else

do_others ();

K&R and Allman:

if (x == y)

do_something();

else

do_others();

If the control body is a
single statement:

• GNU: Indented by 2
spaces

• K&R and Allman:
Indented by 4 spaces

GNU function call: Note the
extra space between the
function name and “(“

26

Indent Style: Lab Project

Which style to use? Your choice!

• Each style has its own rational and history

For the Lab Project

• GNU is more generous in using line space, more popular
today because of GNU projects

• Allman is the most compatible, among the three, with
the AVR’s studio’s default indentation

• K&R is the most compact, and more AVR-compatible
than GNU

Everyone in the same team must use the same style!

27

Format Switch Statement

switch (expr)

{

case ABC:

case DEF:

statement;

break;

case UVW:

statement;

case XYZ:

statement;

break;

}

GNU Style:

• Cases are aligned with
the opening brace
(indented by 2 spaces)

• The statements are
indented by 2 spaces
from case, 4 spaces from
switch

28

Format Switch Statement

switch (expr) {

case ABC:

case DEF:

statement;

break;

case UVW:

statement;

case XYZ:

statement;

break;

}

K&R Style

• Cases are aligned with
the switch

• Statements are indented
by 4 spaces from case
and switch

29

Format Switch Statement

switch (expr)

{

case ABC:

case DEF:

statement;

break;

case UVW:

statement;

case XYZ:

statement;

break;

}

Allman Style*

• Cases are aligned with
the switch and the open
brace

• Statements are indented
by 4 spaces from case
and switch

* This may not be the
original Allman style

30CprE 288, ISU, Fall 2011

Format Statement

Automatic indent tool: indent

• Available on Linux, Mac or other UNIX-type systems

Format with the GNU style

indent -gnu sample.c

Format with the K&R style

indent -kr sample.c

Format with the original Berkeley style (also popular)

indent -orig sample.c

31CprE 288, ISU, Fall 2011

Commenting Your Work

GNU guidelines and our suggestion:

• Each program should start with a comment saying
briefly what it is for

• Each function should have a starting comment saying
what the function does

• Explain arguments properly, particularly if there is
anything unusual

– E.g. A string that is not necessarily zero-terminated

• Explain the return value

• Be generous in commenting, try to put a comment for
every block of statements or statement with non-
straightforward meaning

32CprE 288, ISU, Fall 2011

Commenting Your Work

More from “Recommended C Style and Coding Standards”

• Write a block of comment prologue to each function

• Make function return value have its own line, with
probably a comment explain the return value (same as
GNU)

• Try to align comments

• Use a blank line between local variable declarations and
the function’s statements

33CprE 288, ISU, Fall 2011

Commenting: Example

/* Move serve to a angular position given by degree. */

void

move_servo(unsigned degree)

{

unsigned pulse_width; // pulse width in Timer/Counter cycles

// Pulse width is (1+(degree/180))*t cycles, t is number of clock cycles

per millisecond

pulse_width = 1*MS_TICKS + (degree*MS_TICKS/180);

OCR3B = pulse_width-1; // set pulse width

wait_ms(500); // wait for half second for servo to

settle

}

34CprE 288, ISU, Fall 2011

Commenting: Example

/* Start Ping))) sensor, read the pulse width, and return distance
in millimeter */

unsigned distance //return distance, 0 if out of range (>1000mm)

ping_read()

{

send_pulse(); // send the starting pulse to PING

state = LOW; // now in the LOW state

// Enable Timer1 and interrupt, with noise cancellation
(ICNC=1),

// detecting rising edge (ICES=1), and prescalar 1024
(CS=101)

TCCR1B = _BV(ICNC) | _BV(ICES) | _BV(CS2) | _BV(CS0);

35CprE 288, ISU, Fall 2011

Commenting: Example

// Wait until IC is done

while (state != DONE)

{}

// Disable Timer/Counter 1: CS=000

TCCR1B &= ~(_BV(CS2) | _BV(CS1)| _BV(CS0));

// Convert time difference in cycles to distance in millimeter

unsigned dist = (falling_time - rising_time) / (2 *
cycles_per_mm);

// Out of range?

if (dist > 1000)

dist = 0;

return dist;

}
36CprE 288, ISU, Fall 2011

Nested Control Statement

Always use braces to separate
nested control statements

if (foo)

{

if (bar)

win ();

else

lose ();

}

The following style is bad

if (foo)

if (bar)

win ();

else

lose ();

37CprE 288, ISU, Fall 2011

Naming Conventions

GNU coding standards:

Use underscore to separate multiple words

falling_time

rising_time

init_servo

move_servo

Try to use short local variable names

38CprE 288, ISU, Fall 2011

Naming Conventions

More from “Recommended C Style and Coding Standards”

• Avoid local declarations that override declarations at
higher level, e.g. local vs. global, same local names in
nested blocks

• Avoid using names started with underscore (to avoid
conflicts with system/library variables)

• #define constants should be in all CAPS

• Function, typedef, and variable names, as well as struct,
union, and enum tag names should be in lower case

• Avoid names close to each other, e.g. foo and Foo,
foobar and foo_bar, bl and b1 and bI (with upper case I)

39CprE 288, ISU, Fall 2011

White Space

Use white spaces generously

if ((a + b) == (c – d))

Split long for-loop and align the lines
for (curr = *listp, trail = listp;

curr != NULL;

trail = &(curr->next), curr = curr->next)

{

...

40CprE 288, ISU, Fall 2011

Program File Organization

Use multiple program files, one .c file and one .h file for
each program module

Examples:

lcd.c, lcd.h

util.c, util.c

ir_sensor.c, ir_sensor.h

ping.c, ping.h

robot.c, robot.h

servo.c, servo.h

main.c

41CprE 288, ISU, Fall 2011

