CprE 288 — Introduction to Embedded Systems

Instructors

Swamy Ponpandi

http://class.ece.iastate.edu/cpre288 1

Announcements

* Final Project: Have project groups formed by Friday
(Mar 24, 2017), 4.00 PM

— Each Final Project teams will be composed of two regular Lab
teams combined.

— Give or E-mail your lab section TA, the following,
a) a list of your team members.
b) a creative team name (be mindful of university policies).

http://class.ece.iastate.edu/cpre288 2

Announcement

* Lab 9: Object Detection — 2 week lab

Lecture Overview

e Suggested Programming Style for Lab Project

http://class.ece.iastate.edu/cpre288 5

Lab 9: Object Counting and Size Discrimination

How do you distinguish two objects of different size?

Scanned Results by IR Censor

Scanned Result by Ping))) Sensor

Data Analysis

How can your program identify and distinguish different
objects from the following raw data?

Degrees IR Distance (cm) Sonar Distance (cm)
0 120 324
2 123 330
4 119 363
6 40 40
8 40 40
10 40 41

(more)

Data Analysis

Step 1: Scan the array to identify gaps, convert them to
angular sizes

e What'’s your algorithm?

Step 2: For each object, convert its distance and angular
size into linear size (width)

 What’s your mathematic formula?

10

Suggested Programming Style for Lab Project

References and Readings
e GNU Coding Standards. Free Software Foundation

* Proper Linux Kernel Coding Style. Greg Kroah-Hartman,
Linux Journal, July 01, 2002

e Recommended C Style and Coding Standards. L. W.
Cannon et al.

* Indent Style, Wikipedia

Credit: Jafar M. Al-Kofahi made contribution to an early version of
288 Lab Project Coding Style

11

http://www.gnu.org/prep/standards/
http://www.linuxjournal.com/article/5780?page=0,0
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.3110
http://en.wikipedia.org/wiki/Indent_style

Suggested Programming Style for Lab Project

You are suggested to use the Programming style
presented in this lecture

* |t's a simplified version of GNU Coding Standards, with
elements from the other references

* You may choose some variants, if with good reason

ALL partners of the same project team must use the
same style with the same variants

12

http://www.gnu.org/prep/standards/

Why do we need it?

int
i;main() {for(;i["]<i;++i){--i;}"];read('-'=-"=",i+++"hell\

o,
world!\n","'/"'/'/"));}read(j,i,p){write(]j/p+p,i---3,1i/1);}

——= Dishonorable mention, Obfuscated C Code Con-

test, 1984.
Author requested anonymity.

From “Recommended C Style and Coding Standards”

13

Why do we need it?

int ml (char *p,int width)
{

int r = 0;

char c;

while (width--)

{

c = *pDi+;

if (c == 0)

break:;

if (e = " ")
continue;

if (e < '0" || e = "T")
return -1;

r=r* 8+ (c - '0");
}

return r;

}

Credit: Jafar M. Al-Kofahi
14

Why do we need it?

int getlCctal (char *chrValue,int intWidth)
{

int intResult = 0;

char chrTlnp:

while (intWidth--)
{
chrTmp = *chrValue++;
if (chrTmp == 0)
break:;
if (chrTmp == "' ')
continue;
if (chrTmp < '0"' || chrlmp > "7')
return -1;
intResult = intResult * 8 + (chrTmp - "0');
}
return intResult;

Credit: Jafar M. Al-Kofahi
15

Why do we need it?

We need a good coding style for many reasons

 Understand the code written by ourselves after some
time

* Let others understand the code

 Reduce the number of bugs and the debugging time

e QOverall, reduce the time spent on 288 Lab Project

16

C Programming Style

From GNU Coding Standards, Ch. 5, “Making the Best Use
of C”

* Formatting: Format your source code

e Comments: Commenting your work

e Syntactic Convention: Clean use of C Constructs
* Names: Naming variables, functions, and files

17

Program File Layout

Suggested layout for .c files

1. A prologue that tells what is in the file
Any header file includes

Any defines and typedefs

Global data declarations

S

Functions, in some meaningful order

More details: Recommended C Style and Coding
Standards, Sec 2.2 Program files

18

Program File Layout: Example

/*
* ping.c: Ping))) sensor related functions Prologue
*/

#include <avr/io.h>
#include <avr/interrupt.h> Includes
#include “servo.h”

Defines and defs
// Number of clock cycles for 1-meter distance (single-trip) under prescalar 256

#define TICKS PER_METER 735

Global variables
volatile unsigned falling_time; /[captured time of falling edge
volatile unsigned rising_time; /[captured time of rising edge
unsigned ping_read() Functions

{

19

Header File Layouts

Use the same layout for .c program files, for declarations
visible to outside

Use C Macro def to avoid nested includes

#ifndef EXAMPLE H
#define EXAMPLE H

. /* body of example.h file */
#endif /* EXAMPLE H */

Use extern for global variable visible to outside

extern int sound speed;

20

Format Function

GNU Function layout
— Brace starts at column 1 of a new line
— Function name starts at column 1 of a new line

static char *
concat (char *sl, char *s2)

{

21

Format Expression

Break an long expression: Split it before an operator and
align the two parts properly
1f (foo this 1s long && bar > win (X, y, 2z)

&& remalning condition)

Extra parenthesis: Add extra parentheses if they can make
expressions clearer

max = (x > vy) ? X : vy;

22

Indent Style: GNU

int
GNU indent style

sample func ()

{ The opening brace
while (x == y) occupies a line
{ : :
e () . The opening brace is
indented by 2 spaces
if (some_error) * The next statement is
ldO_CorreCt ()7 indented by another 2
else

cont as usual (); >Paces

finalthing () ;

23

Indent Style: K&R

int sample func ()

{ K&R indent style
while (x == y) { The opening brace of a
SemE s ng () control body does NOT
take a line
1f (some error)
do correct () : * The next statement is
else indented by 4 spaces

cont as usual () ;

}
The K&R Book: The C

finalthing() ; Programming Language,
) Brian W. Kernighan and
Dennis M. Ritchie

24

Indent Style: Allman

int sample func ()

{ Allman indent style (ANSI
while (x == v) style)

{ | The opening brace of a
SemsiEa L () g control body takes a line
if (some error) The opening brace is

do correct(); indented by O space
else

: * The next statement is
t ; :
| Somic_gs_ustel) indented by 4 spaces

finalthing () ;

25

Indent Style: Simple Control Statements

GNU: If the control body is a
if (x == vy) single statement:
do_something (); * GNU: Indented by 2
else spaces
do_others (); * K&R and Allman:
K&R and Allman: Indented by 4 spaces
1f (x == vy)

do_semnethialng () 7 GNU function call: Note the

extra space between the
function name and “(“

else
do others();

26

Indent Style: Lab Project

Which style to use? Your choice!
* Each style has its own rational and history
For the Lab Project

* GNU is more generous in using line space, more popular
today because of GNU projects

* Allman is the most compatible, among the three, with
the AVR’s studio’s default indentation

 K&R is the most compact, and more AVR-compatible
than GNU

Everyone in the same team must use the same style!

27

Format Switch Statement

switch (expr)

{
case ABC:

case DEF:

statement;

break;
case UVW:

statement;

case XYZ%:

statement;

break;

GNU Style:

e Cases are aligned with
the opening brace
(indented by 2 spaces)

* The statements are
indented by 2 spaces
from case, 4 spaces from
switch

28

Format Switch Statement

switch (expr) ({ K&R Style
case ABC: e Cases are aligned with
case DEF: the switch
S CELERMSNE] * Statements are indented
break; by 4 spaces from case
case UVW: and switch
statement;
case XYZ%:
statement;

break;

29

Format Switch Statement

switch (expr) Allman Style*
{ e Cases are aligned with
case ABC: the switch and the open
case DEF: brace

statement;

e Statements are indented

b k;
rea by 4 spaces from case
case UVW: and switch
statement;
case XY4:

* This may not be the
original Allman style

statement;

break;

CprE 288, ISU, Fall 2011 30

Format Statement

Automatic indent tool: indent

* Available on Linux, Mac or other UNIX-type systems

Format with the GNU style
indent -gnu sample.c

Format with the K&R style
indent -kr sample.c

Format with the original Berkeley style (also popular)
indent -orig sample.c

CprE 288, ISU, Fall 2011 31

Commenting Your Work

GNU guidelines and our suggestion:

Each program should start with a comment saying
briefly what it is for

Each function should have a starting comment saying
what the function does

Explain arguments properly, particularly if there is
anything unusual

— E.g. A string that is not necessarily zero-terminated
Explain the return value

Be generous in commenting, try to put a comment for
every block of statements or statement with non-
straightforward meaning

CprE 288, ISU, Fall 2011 32

Commenting Your Work

More from “Recommended C Style and Coding Standards”

Write a block of comment prologue to each function

Make function return value have its own line, with
probably a comment explain the return value (same as
GNU)

Try to align comments

Use a blank line between local variable declarations and
the function’s statements

CprE 288, ISU, Fall 2011 33

Commenting: Example

[* Move serve to a angular position given by degree. */
void
move_servo(unsigned degree)

{

unsigned pulse_width; I/ pulse width in Timer/Counter cycles

// Pulse width is (1+(degree/180))*t cycles, t is number of clock cycles
per millisecond

pulse_width = 1*MS_TICKS + (degree*MS_TICKS/180);

OCR3B = pulse_width-1; // set pulse width
wait_ms(500); // wait for half second for servo to
settle

CprE 288, ISU, Fall 2011 34

Commenting: Example

[* Start Ping))) sensor, read the pulse width, and return distance
In millimeter */

unsigned distance //return distance, O if out of range (>1000mm)
ping_read()

{

send_pulse(); // send the starting pulse to PING
state = LOW, // now in the LOW state

// Enable Timerl and interrupt, with noise cancellation
(ICNC=1),

/[detecting rising edge (ICES=1), and prescalar 1024
(CS=101)

TCCR1B =_BV(ICNC) | _BV(ICES) | _BV(CS2) | _BV(CS0);

CprE 288, ISU, Fall 2011 35

Commenting: Example

/I Walit until IC I1s done
while (state != DONE)

U

/I Disable Timer/Counter 1: CS=000
TCCR1B &= ~(_BV(CS2) | BV(CS1)| BV(CS0));

/[Convert time difference in cycles to distance in millimeter

unsigned dist = (falling_time - rising_time) / (2 *
cycles per_mm);

// Out of range?
if (dist > 1000)
dist = 0;

return dist;

1 CprE 288, ISU, Fall 2011 36

Nested Control Statement

Always use braces to separate

nested control statements The following style is bad
if (foo) 1f (foo)
{ 1f (bar)
1f (bar) win () ;
win () ; else
else lose ()
lose ()

CprE 288, ISU, Fall 2011 37

Naming Conventions

GNU coding standards:

Use underscore to separate multiple words
falling time
rising time
1nlt servo

move Servo

Try to use short local variable names

CprE 288, ISU, Fall 2011 38

Naming Conventions

More from “Recommended C Style and Coding Standards”

 Avoid local declarations that override declarations at
higher level, e.g. local vs. global, same local names in
nested blocks

e Avoid using names started with underscore (to avoid
conflicts with system/library variables)

 #define constants should be in all CAPS

e Function, typedef, and variable names, as well as struct,
union, and enum tag names should be in lower case

* Avoid names close to each other, e.g. foo and Foo,
foobar and foo bar, bl and b1 and bl (with upper case)

CprE 288, ISU, Fall 2011 39

White Space

Use white spaces generously
if ((a + b) == (¢ - d))

Split long for-loop and align the lines
for (curr = *listp, trail = listp;
curr != NULL;

trail = & (curr->next), curr = curr—->next)

CprE 288, ISU, Fall 2011 40

Program File Organization

Use multiple program files, one .c file and one .h file for
each program module

Examples:
lcd.c, Icd.h
util.c, util.c
ir_sensor.c, ir_sensor.h
ping.c, ping.h
robot.c, robot.h
servo.c, servo.h
main.c

CprE 288, ISU, Fall 2011 41

