
CprE 288 – Introduction to Embedded Systems
ARM Assembly Programming: Translating C Control

Statements and Function Calls

1

Instructors:

Dr. Phillip Jones

Announcements

• Exam 3: Friday 7/6 (last day of class)

• Final Projects

– Projects: Mandatory Demos Friday , 7/6 (11am – 3pm)

– Reminder, Lab attendance is mandatory: -10 points from final
project for each lab session you miss

• Quiz 7 (Thuesday, 7/3): ARM Procedure Call Standard readings.

• Reading for the next few weeks

– Textbook: Chapter 2.1-2.3, and 2.6.1-2.6.2

– Textbook: Chapter 4.1 – 4.3

– Assemble ARM instruction set manual:

• Preface, Chapter 3, Chapter 4

– ARM Procedure Call Standard:

• Sections: 5, 7.1.1, 7.2.

2

Major Classes of Assembly Instructions

3

• Data Movement

– Move data between registers

– Move data in & out of Memory

– Different addressing modes

• Logic & Arithmetic

– Addition, subtraction, etc.

– AND, ORR, EOR (Exclusive OR), bit shift, etc.

• Control Flow

– Control which sections of code should be executed (e.g. In C
“IF”, “CASE”, “WHILE”, etc.

– Function Calls

CprE 288, ISU, Fall 2011

C Control Statements

Recall control statements in C:

4

If-else statement:
if (cond)

{

 if-body

}

else

{

 else-body;

}

If statement:
if (cond)

{

 if-body;

}

C Control Statements

Loop statements:

5

While statement:
while (cond)

{

 loop-body;

}

Do-While statement:
do

{

 loop-body

} while (cond);

For statement:
for (init-expr; cond-expr; incr-expr)

{

 loop-body;

}

Control Flow

6

• Control Flow: mechanisms that allow a program to make decisions
about what instruction to execute next from program memory

• Without control flow:

– A CPU would always just execute the next instruction in
program (code) memory

– A computer would be limited in the types of functionality it
could execute

• Two assembly instructions are typically part of any assembly
langue to enable implementing control flow

– Compare: Typically subtracts two things and updates the flags
in the Status Register (i.e. Zero, Carry, Negative, Overflow flags)

– Branch: Based on which flags of the Status Register are set, it
directs the CPU to go to the next instruction in code memory or
to “branch” to an alternative place in code memory.

CprE 288, ISU, Fall 2011

Control Flow Basics

Steps to implement control flow:
1. Set flags in the Status Register

2. Use a Branch instruction to check for particular Status
Register flag values

A. Branch not taken: If the conditions being checked are not met, then
go to the next instruction in program (code) memory.

B. Branch taken: if the conditions being check are met, then go to an
alternative location in code memory, typically indicated by a label.

 Example:
 MOVW R1, 0xFFFF

 MOVW R2, 0x0000

 CMP R1, R2 ;compare R1, and R2 and set flags
 BEQ endif ;check flags, and branch to “endif”
 ;if r1 == r2 (i.e. Zero flag(Z) =1)

 endif:

7

 Setting Status Register Flags

8

• Which instructions can update the Status Register Flags?:

– In general, consult the Assembly Instruction Set manual

• Some examples:

– Compare: e.g. CMP, often used to help check for ==, !=, >, >, <,
<.

– Test: e.g. TST, TEQ, often used to check if given bits are set in a
register, or check if a register is equal to a given value

– Arithmetic: Most ARM arithmetic instructions when appended
with an “S” update the Status Register

– Logic: Most ARM logic instructions when appended with an “S”
update the Status Register

– Move: ARM has a MOVS that updates the Status Register

CprE 288, ISU, Fall 2011

Compare (register)

CMP: Subtracts two registers. Updates Status register

Syntax: CMP Rn, Rm {,<shift>}

Operands: 0 ≤ n ≤ 15, 0 ≤ m ≤ 15

Operations: Rn - Rm (omitting shift), PC PC+4

Binary Format:

shift omitted

imm3:imm2= 0

type = 0

Note: if shift is not omitted, then Rm is shifted based on the
encodings giving in section 4.3.1 in ARM Instruction Set

CprE 288, ISU, Fall 2011 9

Compare (Immediate)

CMP: Subtract constant from reg. Update Status Register.

Syntax: CMP Rn, #const

Operands: 0 ≤ n ≤ 15, 0 ≤ const ≤ 255

Operations: Rn - #const, PC PC+4

Binary Format:

0 ≤ const ≤ 255

const=

i:imm3:imm8

Note: If const is greater than 255, See section 4.2 of ARM
Instruction Set how to determine valid values for const.

CprE 288, ISU, Fall 2011 10

Test (register)

TST: Bitwise AND of two registers. Updates Status Register

Syntax: TST Rn, Rm {,<shift>}

Operands: 0 ≤ n ≤ 15, 0 ≤ m ≤ 15

Operations: Rn and Rm (omitting shift), PC PC+4

Binary Format:

shift omitted

imm3:imm2= 0

type = 0

Note: if shift is not omitted, then Rm is shifted based on the
encodings giving in section 4.3.1 in ARM Instruction Set

CprE 288, ISU, Fall 2011 11

Test (Immediate)

TST: Bitwise AND reg with constant. Update Status Register

Syntax: TST Rn, #const

Operands: 0 ≤ n ≤ 15, 0 ≤ const ≤ 255

Operations: Rn and #const, PC PC+4

Binary Format:

0 ≤ const ≤ 255

const=

i:imm3:imm8

Note: If const is greater than 255, See section 4.2 of ARM
Instruction Set how to determine valid values for const.

CprE 288, ISU, Fall 2011 12

Checking Status Register Flags

13

• Branch instructions check if particular conditions are satisfied
by the Status Register flags.

– If conditions are satisfied, then CPU branches to a label

– If conditions are not satisfied CPU goes to next instruction.

• Some Branch conditions:

– BEQ / BNE: Is Zero flag (Z) = 1 or 0, used for comparing
signed or unsigned values

– BGT / BGE / BLT / BLE: comparing Signed values

– BHI/BHS/BLO/BLS: comparing Unsigned values

CprE 288, ISU, Fall 2011

Branch (Conditional)

B{cond}: Branch to a target address if condition satisfied

Syntax: B{cond} label

Operands: cond (see 3.4.1 of ARM Instruction set)

 Assembler encodes label into:PC+S:J2:J1:imm6:imm11:'0'

Operation: if(cond), then PC PC+ S:J2:J1:imm6:imm11:'0'

 else PC PC+ 4

Binary Format:

CprE 288, ISU, Fall 2011 14

Table of Branch Conditions

15

CprE 288, ISU, Fall 2011

Condition
Encoding (cond)

Branch
Type

Meaning Status Flag
State

0000 BEQ Equal Z = 1
0001 BNE Not equal Z = 0
0010 BHS Higher or Same (Unsigned) C = 1
0011 BLO Lower (Unsigned) C = 0
0100 BMI Negative N = 1
0101 BPL Positive N=0
0110 BVS Overflow V=1
0111 BCV No overflow V=0
1000 BHI Higher (Unsigned) C=1 & Z=0
1001 BLS Lower or Same (Unsigned) C=0 | Z=1
1010 BGE Greater than or Equal (Signed) N = V
1011 BLT Less than (Signed) N != V
1100 BGT Greater than (Signed) N=V & Z=0
1101 BLE Less than or Equal (Signed) N != V | Z=1

Table of Branch Conditions

16 CprE 288, ISU, Fall 2011

Condition
Encoding (cond)

Branch
Type

Meaning Status Flag
State

0000 BEQ Equal Z = 1
0001 BNE Not equal Z = 0
0010 BHS Higher or Same (Unsigned) C = 1
0011 BLO Lower (Unsigned) C = 0
0100 BMI Negative N = 1
0101 BPL Positive N=0
0110 BVS Overflow V=1
0111 BCV No overflow V=0
1000 BHI Higher (Unsigned) C=1 & Z=0
1001 BLS Lower or Same (Unsigned) C=0 | Z=1
1010 BGE Greater than or Equal (Signed) N = V
1011 BLT Less than (Signed) N != V
1100 BGT Greater than (Signed) N=V & Z=0
1101 BLE Less than or Equal (Signed) N != V | Z=1

Exercises

Assume: a located @ 0x1000_A000, b located @ 0x1000_B000

Exercises: Write a sequence of instructions

Branch to label if a < b, a and b are variables of “signed int” type

Branch to label if a >= b, a and b are vars of “unsigned int” type

Branch to label if a == b, a and b are “int” type variables

17

Exercises

Assume: a located @ 0x1000_A000, b located @ 0x1000_B000

Exercise: Write a sequence of instructions

1. Branch to label if a < b (a and b signed int type)

 MOVW R0, 0xA000;get a address

 MOVT R0, 0x1000

 MOVW R1, 0xB000;get b Address

 MOVT R1, 0x1000

 LDR R2, [R0, #0] ;load a

 LDR R3, [R1, #0] ;load b

 CMP R2, R3

 BLT label ; check if a is less than b

label:

18

Translate If-Statement

Example: Assume: a @ 0x1000_A000, b @ 0x1000_B000

 if (a < b) // assume a and b are signed ints

 {

 a = -a;

 }

19

Translate If-Statement

Example: Assume: a @ 0x1000_A000, b @ 0x1000_B000

 if (a < b)

 {

 a = -a;

 }

 MOVW R0, 0xA000;get a address

 MOVT R0, 0x1000

 MOVW R1, 0xB000;get b Address

 MOVT R1, 0x1000

 LDR R2, [R0, #0] ;load a

 LDR R3, [R1, #0] ;load b

 CMP R2, R3

 BGE endif ; take branch if complement true

 NEG R2 ; a = -a

 STR R2 [R0, #0] ;store a

endif:

20

If-Statement: Structure

Control and Data Flow Graph Linear Code Layout

21

cond

if-body

test cond

F

T

br if cond=F

if-body

If-Statement: Structure

if (a < b) // C code is testing for less than

{

 a = -a;

}

 MOVW R0, 0xA000;get a address

 MOVT R0, 0x1000

 MOVW R1, 0xB000;get b Address

 MOVT R1, 0x1000

 LDR R2, [R0, #0] ;load a

 LDR R3, [R1, #0] ;load b
 CMP R2, R3

 BGE endif ; if complement true

 NEG R2 ; a = -a

 STR R2 [R0, #0] ;store a

endif:

LDS r24, ch

 CPI r24, 0

 BRGE endif ; Assemble test for

 ; complement

 NEG r24

 STS ch, r24

endif: …

test cond

br if cond=F

if-body

22

Branch (Unconditional)

B: Branch to a target address

Syntax: B label

Operands: label encoded into: S:I1:I2:imm10:imm11:'0'

Operation: PC PC+ S:I1:I2:imm10:imm11:'0'

Binary Format:

I1 = NOT(J1 EOR S)

I2 = NOT(J2 EOR S)

CprE 288, ISU, Fall 2011 23

IF-Else Statement

 if (cond)

 if-body

 else

 else-body;

Example:

 int max, a, b;

 if (a < b)

 max = b;

 else

 max = a;

24

If-Else Statement: Structure

Control and Data Flow Graph Linear Code Layout

25

cond

if-body

test cond

 F

T

br if cond=F

else-body

jump

If-body

else-body

If-Else Statement: Structure

; assume a in R0 b in R1, max address in R2 (all signed)

 CMP R0, R1

 BGE else

 STR R1, [R2, #0]

 B endif

else:

 STR R0, [R2, #0]

endif: … 26

test cond

br if cond=F

jump

If-body

else-body

 int max, a, b;

 if (a < b)

 max = b;

 else
 max = a;

If and If-Else summary

For simple If and If-Else statement, the behavior of C and
Assembly are complementary. So complement condition
is used.

Examples:

 C Assembly

if (a >= b) branch if a<b, use BLT

if (a > b) branch if a<b, use BLE

if(a = b) branch if a!=b, use BNE

27

Caveat when comping against a constant

 C Assembly (assume a in R0)

If (5 > a), branch if 5 <= a?

 CMP #5, R0

 BLE endif

What is the issue?

28

Caveat when comping against a constant

 C Assembly (assume a in R0)

If (5 > a), branch if 5 <= a?

 CMP #5, R0

 BLE endif

Problem: Constant must be second argument of compare!

29

Caveat when comping against a constant

Translate the C code into an equivalent condition, then

compile into assembly using complement condition.

 C translated C Assembly

Case 1: if (5 > a) if (a < 5), branch if a ≥ 5

 CMP R0, #5

 BGE endif

30

Compound Condition (&&)

 if (a >= b && b< 10 && … && a > 20) // signed ints

 ; If only consists of Boolean AND’s, follow complement rule

Recall C uses Lazy Evaluation

; assume a in R0, and b in R1
 CMP R0, R1

 BLT else ; complement of >

 CMP R1, #10

 BGE else ; complement of <

 …

 CMP R0, #20

 BLE else ; complement of >

 … ; if-body

 B endif

else:

 … ; else-body

endif:

31

Compound Condition (||)

 if (a >= b || b< 10 || … || a > 20) // signed ints

 ;If only Boolean OR’s, then complement only last condition

 Again, Recall C uses Lazy Evaluation

; assume a in R0, and b in R1
 CMP R0, R1

 BGE if-body ; no complement, and br to if-body

 CMP R1, #10

 BLT if-body ; no complement, and br to if-body

 …

 CMP R0, #20

 BLE else ; complement of >

if-body:

 … ; if-body

 B endif

else:

 … ; else-body

endif:
32

Function Call Convention

What is required for supporting a function call?
– Passing parameters

– Getting the return value

– Sharing registers between Caller and Callee

– Local storage (typically placed in reg or on the Stack)

– Jumping to the Callee

– Returning to the Caller

Why we study the C calling convention
– Must follow it when mixing C with assembly or using pre-

compiled C library functions

– The calling convention is NOT part of the instruction set
architecture. It is an agreed upon convention to allow a
compiler and human to generate code that can work
together

33

ARM Function Call Standard: Passing

Parameters and Return Value
Function parameters

– Use R0, R1, R2, R3

– Parameters passed to R0 – R3 in order.

– Parameter size: 2, or 1 bytes

• Value is Zero or Signed extended before placed in a register

– Parameter size 8 bytes

• Use a pair of registers (e.g. R1:R0)

– Extra parameters placed on the Stack

Function return value

– 8-bit in R0 (Zero or Signed extended)

– 16-bit in R0 (Zero or Signed extended)

– 32-bit in R0

– 64-bit in R1:R0
34

 ARM Function Call Standard: Sharing Registers

How to share registers between Caller and Callee?

Non-volatile(Callee must preserve):R4-R11, SP

 Callee must make sure these register values are
preserved/restored. In other words, the Caller can
assume the value of these registers after the Callee
function returns will be the same as before the Callee
function was called.

Volatile (Callee can freely modify): R0-R3, LR

 If the Caller wants the values of these registers to be
the same before and after the Callee function executes,
then the Caller must preserve them before the Callee
function executes, and restore them after Callee
function executes.

35

Preserving and Restoring Registers

• Preserve a Register Value
– Place the register value somewhere “safe”

– A place in Data Memory called the Stack is this “safe” place

• Restore a Register Value
– Place the value saved to the Stack back to the register

• Where is the Stack and how does it work?
– Starts at the highest address in Data Memory (Bottom of Stack)

– Values are placed and removed from the Top of the Stack

– Placing a value on the Stack causes it to grow (Downward)

– Removing a value from the Stack cause it to shrink (Upward)
– Location of the Top of the Stack is always in register SP (R13).

• Assembly Instructions used
– PUSH Rn: Place the value of Rn to the “top” of the Stack. Then

decrease the value of SP by 4. [SP] Rn, SP SP-4.

– POP Rn: Increase the value of SP by 4, then remove value at

“top” of the Stack and place into Rn. SPSP+4, Rn [SP]

36

Summary Uses of the Stack

• Preserving and Restoring Registers
– See previous slide

• Passing Function parameters when there are more

parameters than parameter registers (R0 – R3)
– Extra parameters are PUSHed onto the stack before a

function call, and POPed after the function returns

• Store local variables, when it is not convenient to use

registers
– Note: it is more efficient to access data from a register,

than from Data Memory (i.e. the Stack)

• Function Stack-Frame: Contains information associated

with a called function
– E.g. Function args, local vars, return address, preserved values

37

PUSH

PUSH: Place a register value onto the top of the Stack

Syntax: PUSH Rn

Operands: 0 ≤ n ≤ 12, n=14: Note Rn can be a list of

registers, encoded as: registers = '0':M:'0':register_list

Operation: [SP] Rn; SP SP - 4

 PC PC+ 4

Binary Format:

CprE 288, ISU, Fall 2011 38

POP

POP: Remove value at top of Stack and place in a register.

Syntax: POP Rn

Operands: 0 ≤ n ≤ 12, n=14, n=15: Note Rn can be a list of

registers, encoded as: registers = P:M:'0':register_list

Operation: SP SP + 4; Rn [SP]

 PC PC+ 4

Binary Format:

CprE 288, ISU, Fall 2011 39

Jump to and return from a function

• Jump to Callee

– Save address to use for returning to Caller

– Update PC to address of first instruction of Callee function

• Return to Caller

– Callee updates PC to got back to the Caller

• Assembly Instructions used

– BL label: Branch with link, places PC + 4 into the LR

(R14), and PC label. Where label is the name of

the function being called.

– BX LR: Branch eXchange, places the vale of LR (R14)

into the PC. i.e. PC LR. Assuming LR (R14) contains

the return address.

40

Branch with Link

BL: Branch to target address & store PC+4 to Link Register

Syntax: BL label

Operands: label encoded into: S:I1:I2:imm10:imm11:'0'

Operation: LR PC+4; PC PC+ S:I1:I2:imm10:imm11:'0‘,

Binary Format:

I1 = NOT(J1 EOR S)

I2 = NOT(J2 EOR S)

CprE 288, ISU, Fall 2011 41

Branch eXchange

BX: Branch to address located in a register

Syntax: BX Rn

Operands: 0 ≤ n ≤ 15

Operation: PC Rn

Binary Format:

Note: Bit[0] of Rn specifies if the Thumb or ARM

Instruction set should be used.

CprE 288, ISU, Fall 2011 42

Function Call: Example

main: … ; call setup

 BL myfunc ; call myfunc

 … ; return to here

myfunc: … ; prologue

 … ; function body

 … ; epilogue

 BX LR ; return

43

 ARM Function Call Standard

R15

R14
R13
R12

R11
R10
R9
R8

R7

R6
R5
R4

R3 (a4)
R2 (a3)
R1 (a2)
R0 (a1)

PC

LR

44

SP

Non-volatile: Callee must preserve/restore if it uses

Volatile: Caller must preserve/restore if it wants the register

to maintain its value across a function call

a: Function argument (Assuming each param is 4 bytes or less)

Return value: 4 bytes or less

Return value: 8 bytes

Exercise

int x, y, z; // x @ 0x1000_A000, y @ 0x1000_B000, z @ 0x1000_C000

void my_func()

{

 …

 z = max(x, y);

 …

}

int max(int a, int b)

{

 if(a<b)

 return b;

 else

 return a;

}

 45

Function Call: Example
; z = max(x, y);

; // x @ 0x1000_A000, y @ 0x1000_B000, z @ 0x1000_C000

my_func:

 … ; more instructions

 MOVW R2, 0xA000;get x address (global variable)

 MOVT R2, 0x1000

 MOVW R3, 0xB000;get y Address (global variable)

 MOVT R3, 0x1000 ;

 LDR R0, [R2, #0] ;load x ; 1st parameter of max

 LDR R1, [R3, #0] ;load y ; 2nd parameter of max

 PUSH LR ;Save return address for my_func

 BL max ;call max(x,y)

 POP LR ;Restore return address for my_func

 MOVW R2, 0xC000;get z address (global variable)

 MOVT R2, 0x1000

 STR R0 [R2, #0] ;store z ; save returned results

 … ; more instructions

BX LR ; Return to Caller

46

Function Call: Example

max:

 ; a=>R0, b=>R1, return value in R0

 CMP R0, R1 ; compare a, b

 BRGE endif ; branch if a>=b

 MOV R0, R1 ; move b to R0

endif:

 BX LR ; Return to Caller

47

int max(int a, int b)

{

 if(a<b)

 return b;

 else

 return a;

}

ARM Function Call Standard: Passing

Parameters and Return Value
Function parameters

– Use R0, R1, R2, R3

– Parameters passed to R0 – R3 in order.

– Parameter size: 2, or 1 bytes

• Value is Zero or Signed extended before placed in a register

– Parameter size 8 bytes

• Use a pair of registers (e.g. R1:R0)

– Extra parameters placed on the Stack

Function return value

– 8-bit in R0 (Zero or Signed extended)

– 16-bit in R0 (Zero or Signed extended)

– 32-bit in R0

– 64-bit in R1:R0
48

 ARM Function Call Standard: Sharing Registers

How to share registers between Caller and Callee?

Non-volatile(Callee must preserve):R4-R11, SP

 Callee must make sure these register values are
preserved/restored. In other words, the Caller can
assume the value of these registers after the Callee
function returns will be the same as before the Callee
function was called.

Volatile (Callee can freely modify): R0-R3, LR

 If the Caller wants the values of these registers to be
the same before and after the Callee function executes,
then the Caller must preserve them before the Callee
function executes, and restore them after Callee
function executes.

49

 ARM Function Call Standard

R15

R14
R13
R12

R11
R10
R9
R8

R7

R6
R5
R4

R3 (a4)
R2 (a3)
R1 (a2)
R0 (a1)

PC

LR

50

SP

Non-volatile: Callee must preserve/restore if it uses

Volatile: Caller must preserve/restore if it wants the register

to maintain its value across a function call

a: Function argument (Assuming each param is 4 bytes or less)

Return value: 4 bytes or less

Return value: 8 bytes

Example

int add2(int a, int b) {

 return a+b;

}

int add3(int a, int b, int c) {

 return add2(add2(a, b), c);

}

int sum, x, y, z; // x @ 0x1000_0000, y @ 0x1000_0004,

 // z @ 0x1000_0008, sum @ 0x1000_000C

int main() {

 …

 sum = add3(x, y, z);

 …

}

51

Example

add2:

 ; a=>R0, b=>R1, return value in R0

 ADDS R0, R1 ; a + b

 BX LR ; Return to Caller

52

int add2(int a, int b) {

 return a+b;

}

add3:

 ; a=>R0, b=>R1, c=>R2, return value in R0

 PUSH LR ;Save return address for add3

 PUSH R2 ;Save c

 BL add2 ;call add2(a,b)

 POP R1 ;Restore c to R1

 BL add2 ;call add2(add2(a,b), c)

 POP LR ;Restore return address for add3

 BX LR ; Return to Caller

Question: Why save c?
53

int add3(int a, int b, int c) {

 return add2(add2(a, b), c);

}

How main() calls add3: Assume for some reason R3 and R5
must be preserved across the function call
// sum = add3(x, y, z);
// x @ 0x1000_0000, y @ 0x1000_0004, z @ 0x1000_0008
// sum @ 0x1000_000C
main:

 PUSH R3 ;Save R3

 MOVW R4, 0x0000 ; Get base address
 MOVT R4, 0x1000

 LDR R0, [R4, #0] ;load x ; 1st parameter of add3

 LDR R1, [R4, #4] ;load y ; 2nd parameter of add3

 LDR R2, [R4, #8] ;load z ; 3rd parameter of add3

 BL add3 ;call add3(x,y, z)

 STR R0, [R4, #C] ; ; store result to sum

 POP R3 ;Restore R3

Question: Is it not necessary to push/pop R5? 54

