
CprE 288
 Translating C Control Statements and Function Calls,

Loops, Interrupt Processing

1

Instructors:

Dr. Phillip Jones

Dr. Zhao Zhang

Announcements

• Final Projects
– Peer Review: Each person submit a Peer review of team members.

– Mandatory Demo during you lab section next week (i.e. Deadweek).

• HW11: Not handed in or graded
• Final Exam:

– Morning Section: Monday 12/12 (9:45am): In class

– Afternoon Section: Tuesday 12/13 (Noon) : In class

• Reading for the next few weeks
– Chapter 2.1-2.3, and 2.6.1-2.6.2

– Chapter 4.1 – 4.3

– Assemble ARM instruction set manual.

• Preface, Chapter 3, Chapter 4

– ARM Procedure Call Standard

• Sections: 5, 7.1.1, 7.2.
2

Major Classes of Assembly Instructions

3

• Data Movement

– Move data between registers

– Move data in & out of Memory

– Different addressing modes

• Logic & Arithmetic

– Addition, subtraction, etc.

– AND, ORR, EOR (Exclusive OR), bit shift, etc.

• Control Flow

– Control which sections of code should be executed (e.g. In C
“IF”, “CASE”, “WHILE”, etc.

– Function Calls

CprE 288, ISU, Fall 2011

C Control Statements

Loop statements:

4

While statement:
while (cond)

{

 loop-body;

}

Do-While statement:
do

{

 loop-body

} while (cond);

For statement:
for (init-expr; cond-expr; incr-expr)

{

 loop-body;

}

DO-WHILE Loop

Example:

void strcpy (char *dst,

 char *src)

{

 char ch;

 do {

 ch = *src++;

 *dst++ = ch;

 } while (ch);

}

5

Do-While statement:
do

{

 loop-body

} while (cond);

DO-WHILE Loop

Control and Data Flow Graph Linear Code Layout

6

do-body

cond T

F

do-body

test cond

br if cond=T

Loop prologue
(optional)

Loop epilogue
(optional)

DO-WHILE Loop

; parameter: dst=>R0, src=>R1

; reg use: ch=>R2

strcpy:

 ;e.g. initialize local vars

loop:

 LDRB R2, [R1], #1 ;get btyte from src

 STRB R2, [R0], #1 ;store to dst

 CMP R2, #0

 BNE loop ; ch!=0

 BX LR ; return to caller

7

ch = *src++
*dst++ = ch

test ch

br if ch!=0

Loop prologue

WHILE Loop

Control and Data Flow Graph Linear Code Layout

(optional prologue and
epilogue not shown)

8

while-body

test cond

br if cond=T

while-body

cond T

F

jump

WHILE Loop Example

strlen(): return the length of a C string

int strlen(char *str)

{

 int len = 0;

 while (*str++)

 {

 len++;

 }

 return len;

}

9

While statement:
while (cond)

{

 loop-body;

}

WHILE Loop

; parameter: str=> R0, return string length=> R0

; reg use: len=>R3, tmp_char=>r2

strcpy:

 ANDS R3, #0 ; len = 0 (prologue)

 B test

loop:

 ADDS R3, 1

test:

 LDRB R2, [R0], #1 ;get byte from str

 CMP R2, #0

 BNE loop ;tmp_char!=0

 MOV R0, R3 ;set return value

 BX LR ;return to caller

10

len++

test *str++

br if *str!=0

jump

FOR Loop

Example:
unsigned char checksum(unsigned char data[],

 int N)

{

 unsigned char checksum = 0;

 for (int i=0; i < N; i++)

 {

 checksum ^= data[i];

 }

 return checksum;

} 11

For statement:
for (init-expr; cond-expr; incr-expr)

{

 loop-body;

}

FOR Loop

Control and Data Flow Graph Linear Code Layout

(optional prologue and epilogue not shown)

 12

for-body

Incr-expr

br if cond=T

for-body

cond
T

init-expr

incr-expr

F

init-expr

jump

test cond

FOR Loop
; parameter: data=>R0, N=>R1, return value=>R0

; reg use: checksum=>R2, i=>R3, temp_data=>R4

checksum:

 PUSH R4 ;preserve is non-volatile

 ANDS R2, #0 ;checksum = 0

 ANDS R3, #0 ; i = 0

 B cond

loop:

 LDRB R4, [R0], #1 ;load data[i]

 EOR R2, R4 ;checksum^=data[i]

 ADDS R3, #1 ; i++

cond:

 CMP R3, R1 ;cmp i, n

 BLT loop ;br if i<n

 POP R4 ;preserve is non-volatile

 MOV R0, R2 ;set return value

 BX LR ;return to caller 13

checksum^=
data[i]

i++

br if i < N

i = 0

jump

cmp i, N

Loop Optimization: Example
; parameter: data=>R0, N=>R1, return value=>R0

; reg use: checksum=>R2, temp_data=>R3

checksum:

 ANDS R2, #0 ;checksum = 0

 B cond

loop:

 LDRB R3, [R0], #1 ;load data[i]

 EOR R2, R3 ;checksum^=data[i]

 SUBS R1, #1 ;N--

cond:

 BNE loop ;br if N !=0

 MOV R0, R2 ;set return value

 BX LR ;return to caller
14

checksum^=
data[i]

N--

br if N != 0

i = N

jump

cmp N,0

One less instruction in loop: 4 vs. 5, for long running loops can save much time!

FOR Loop

Another example:

int data[]; // at location 0x1000_A000

// clear the first n elements of data[]

void clear_data(int N)

{

 for (int i = 0; i < N; i++)

 data[i] = 0;

}

15

FOR Loop
; parameter: N=>R0

; reg use: data=>R1, R2=>0, i=>R3,

checksum:

 MOVW R1, #0x1000 ; data global

 MOVT R1, #0xA000 ;

 ANDS R2, #0 ;R2 = 0

 ANDS R3, #0 ;i = 0

 B cond

loop:

 STR R2, [R1], #4 ;clear data[i]

 ADDS R3, #1 ; i++

cond:

 CMP R3, R0 ;cmp i, N

 BLT loop ;br if i<N

 BX LR ;return to caller

16

data[i] = 0

i++

br if i < N

i = 0

jump

cmp i, N

Optimized version
; parameter: N=>R0

; reg use: data=>R1, R2=>0,

checksum:

 MOVW R1, #0x1000 ; data global

 MOVT R1, #0xA000 ;

 ANDS R2, #0 ;R2 = 0

 B cond

loop:

 STR R2, [R1], #4 ;clear data[i]

 SUBS R0, #1 ; N--

cond:

 BNE loop ;br if N !=0

 BX LR ;return to caller

17

data[i] = 0

N--

br if N !=0

N

jump

cmp N, 0

One less instruction in loop: 3 vs. 4, for long running loops can save much time!

AVR Interrupt Processing (Not updated for ARM)

1. Exceptional Control Flow

2. Connecting interrupt source and ISR:

Vector Table

3. Writing ISR functions

ISR: Interrupt Service Routine

Interrupt processing will NOT be covered in

Exam 3

18

Exceptional Control Flow

Exception events in general processors:
– Internal sources: Arithmetic overflow, memory violation, and others

– External sources: Timer expirations, input capture, output

compare, and others

AVR: All are called interrupts, exception handler is called ISR

Foreground

program

Exception

handler

Event

occurs

here

 Icurr

 Inext

Exception Exception

processing

Exception

return

(optional)

19

Exceptional Control Flow

Need to do the following

• Stop the foreground execution

• Establish a running environment for ISR

• Find and run the corresponding ISR

• Resume the foreground execution

20

Interrupt Principle

What computation is correct?

– If the program state at the end is what we want to see

– That includes registers and memory contents that
programmers may perceive

What is computation?

– It’s a transition sequence of a finite state machine
leading to the desired state, and

– The next state is a function of the current state (a sub-
type of Moore Machine)

How do we stop (and then resume) a finite state machine?
– Restore state including PC, GPRs, SREG, Stack, and any other

important state information

21

Interrupt Principle

State of a program execution

– Registers: PC, R0-R31, SREG, SP, others

– Static data (global and state variables)

– Stack data (local variables, linkage, temp. variables)

The next state is a function of the current state during

a computation phase

22

Interrupt Principle

Registers:

 Save and restore all registers to be changed

Data Segment:

 Only change ISR-private variable and shared variables

 Do not change other part of data memory

Stack Segment:

 Create its one own stack frames

 Do not change what’s already here in stack

 Restore stack top before exiting

23

AVR Interrupt Vector Table

Interrupt number: unique

identifier number of each

event

Interrupt Jump Table: Each

entry is a jump instruction

that jumps to an Interrupt

Service Routine (ISR)

In AVR, the table starts at

0x0000 by default

Jump table

word

Code for ISR 1

Code for ISR 2

Code for ISR 3

.

.

.

Code for ISR n

0 JMP ISR1

1 JMP ISR2

2 JMP ISR3

…

(n-

1)

JMP ISRn

24

AVR Interrupt Vector Table

How to make the exceptional control flow happen?

Current PC + 1

Current PC + 2

Branch Target

Select Signal

0x0000 + (Interrupt number – 1)

Interrupt has happened and

interrupt is enabled

Next PC Note: Instruction memory uses word address

 one word is two bytes

25

AVR Interrupt Vector Table

Vector Table is actually different: Each entry stores

the address to an ISR

– For example, Motorola MPC555 uses exception vector

table

However, AVR uses Jump Table but calls it Vector

Table

26

AVR Interrupt Vector Table

35 interrupt sources in total; see page 60 of ATmega128 data sheet

27

AVR Interrupt Vector Table

The AVR Interrupt Vector Table has 35 entries,
starting from 1

– By default, GCC fills all entries with a default ISR

– The default ISR resets the program execution

If you declare an ISR for an interrupt source:
– GCC fills the associated entry with “JMP your_ISR”

Example: ISR (TIMER1_CAPT_vect)
– The C function name is TIMER1_CAPT_vect()

– Entry 12 (address 0x0016) of the table is filled with the
starting address of TIMER1_CAPT_vect()

28

AVR Interrupt Vector Table

To write an assembly ISR, create a .S file in the
project, and write function as follows

#include <avr/io.h>

; Input capture ISR on Timer/Counter 1, channel A

.global TIMER1_COMPA_vect

TIMER1_COMPA_vect:

 … ; my assembly code, many lines here

 RETI

Use the right vector name to declare your assembly
function. GCC won’t report if the name is wrong

29

Interrupt Service Routine

General procedure of writing an ISR in assembly

1. Push ALL registers that could be changed into the

stack

2. Interrupt processing

3. Pop all saved registers from the stack

4. Return from interrupt

30

Interrupt Service Routine

When Interrupt happens, the CPU let the current
instruction finish, and then

1. Clear the I flag in SREG (to disable interrupt)

2. Push PC into the stack

Instruction RETI (Return From Interrupt) does the
reverse:

1. Pop PC from the stack

2. Set the I flag in SREG (to enable interrupt)

31

ISR Example: Count IC Events

.global TIMER1_CAPT_vect

TIMER1_CAPT_vect:

 PUSH r1 ; save r1

 IN r1, 0x3F ; load SREG

 PUSH r1 ; push SREG

 LDS r1, n ; load n

 INC r1 ; n++

 STS n, r1 ; store n

 POP r1 ; pop SREG

 OUT 0x3F, r1 ; restore SREG

 POP r1 ; restore r1

 RETI ; return from interrupt

32 Updated

ISR: What Registers to Save?

An ISR can be written in C and it calls other C functions

(which may only change GPRs and SREG)

What GPRs should be saved before an ISR written in C

starts execution, for correctness and maximum

efficiency? (No more, no less.)

A. Caller-save (volatile) and fixed registers: R0-R1, R18-R27

and R30-R31, or

B. Callee-save (non-volatile) registers: R2-R17 and R28-R29, or

C. All GPRs: R0-R31?

The answer is A.

33

