Parallax Standard Servo (#900-00005)

The Parallax Standard Servo is ideal for adding 181° range of motion and position control to your project. Great for robotics applications.

Features

- Holds any position between 0 and 180 degrees
- 43.1 oz-in torque at 6 V
- Accepts four mounting screws
- Easy to interface with any Parallax microcontroller or PWM-capable device
- Simple to control with the PULSOUT command in PBASIC or SX/B
- High precision gear made of POM (polyacetal) resin makes the operation smooth causing no backlash.
- Weighs only 1.55 oz (44 g)
- Manufactured for Parallax exclusively by Futaba

Key Specifications

- Power requirements: 4 to 6 VDC*; Maximum current draw is 140 +/- 50 mA at 6 VCDC when operating in no load conditions, 15 mA when in static state
- Communication: Pulse-width modulation
- Dimensions approx 2.2 x 0.8 x 1.6 in (5.58x 1.9 x 40.6 cm) excluding servo horn
- Operating temperature range: 14 to 122 °F (-10 to +50 °C)

*Power Requirement Notes

Futaba specifies 4-6 VDC for this servo. However, we find that this servo is tolerant of a 9 V battery for very brief periods of time when there is no load, as used in some activities in the Stamps in Class series of tutorials. (Slight jitting may be observed when batteries are fresh; this does not cause damage). Do not use this servo with an unregulated wall-mount supply, or a regulated wall mount supply exceeding 6 VDC.

Servo current draw can spike while under load. Be sure that your application's power supply and voltage regulator is prepared to supply adequate current for all servos used. Do not try to power this servo directly from a BASIC Stamp module's Vdd or Vin pins; do not connect the servo's Vss line directly to the BASIC Stamp module's Vss pin.
Quick-Start Circuit

\[V\mu = \text{microcontroller voltage supply} \]

\[V_{\text{servo}} = 4 \text{ to } 6 \text{ VDC, regulated or battery (See Error! Reference source not found., page Error! Bookmark not defined.)} \]

\[I/O = \text{PWM TTL or CMOS output signal, 3.3 to 5 V, not to exceed } V_{\text{servo}} + 0.2 \text{ V} \]

Specifications

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (White)</td>
<td>Signal</td>
<td>Input; TTL or CMOS</td>
<td>3.3</td>
<td>5.0</td>
<td>(V_{\text{servo}} + 0.2)</td>
<td>V</td>
</tr>
<tr>
<td>2 (Red)</td>
<td>V_{\text{servo}}</td>
<td>Power Supply</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>3 (Black)</td>
<td>Vss</td>
<td>Ground</td>
<td>0</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Power Precautions

- Do not use this servo with an unregulated wall-mount supply. Such power supplies may deliver variable voltage far above the stated voltage.
- Do not power this servo through the BASIC Stamp Module's Vdd pin.
- Servo current draw can spike while under peak load; be sure your application's regulator is prepared to supply adequate current for all servos used in combination.
- Some Stamps in Class tutorials, such as *What's a Microcontroller?* instruct the user to briefly power these servos with a 9V battery when using a HomeWork Board and no load; this does not cause damage.

Board of Education Jumper Connection

When connecting the servo to the Board of Education Rev C's servo header, be sure the jumper is set to Vdd (regulated 5 VDC for this board) as shown in the figure below. Failure to place the jumper at this setting can cause damage your servo.
Communication Protocol

The Parallax Standard Servo is controlled through pulse width modulation, where the position of the servo shaft is dependent on the duration of the pulse. In order to hold its position, the servo needs to receive a pulse every 20 ms. Below is a sample timing diagram for the center position of the Parallax Standard Servo.

```
Vdd

1.5 ms

Vss

20 ms

1.5 ms
```

BASIC Stamp 2 Programming Example

PBASIC has a PULSOUT command that sets the I/O pin to an output and sends a pulse of a specified duration.

PULSOUT Pin, Duration

The example shown below for a BASIC Stamp 2 causes a servo connected to BASIC Stamp I/O pin 12 to turn to and hold its center position for approximately 5 seconds.

```
' CenterStdServo.bs2
' {$STAMP BS2}
' {$PBASIC 2.5}
counter VAR Word

FOR counter = 1 TO 220
    PULSOUT 12, 750
    PAUSE 20
NEXT
```

Servo I/O pin

FOR counter = 1 TO 220
 PULSOUT 12, 750
 PAUSE 20
NEXT

Number of 44ths of a second to hold the position, for the BS2

Position to hold, in 2 µs units for the BS2

Required 20 ms between each pulse

For detailed explanations using the BASIC Stamp 2, see What's a Microcontroller? Chapter 4, available for free download from www.parallax.com/go/WAM.

Different BASIC Stamp modules use different units for the PULSOUT command's Duration argument. When adapting BS2 code to another BASIC Stamp model, you may need to make adjustments. The table below lists the PULSOUT ranges for each BASIC Stamp microcontroller. See the BASIC Stamp Manual or BASIC Stamp Editor Help for more information.

<table>
<thead>
<tr>
<th>BASIC Stamp Module</th>
<th>1.3 ms</th>
<th>1.5 ms (center)</th>
<th>1.7 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS1</td>
<td>130</td>
<td>150</td>
<td>170</td>
</tr>
<tr>
<td>BS2, BS2e, BS2pe</td>
<td>650</td>
<td>750</td>
<td>850</td>
</tr>
<tr>
<td>BS2sx, BS2px, BS2p24/40</td>
<td>1625</td>
<td>1875</td>
<td>2125</td>
</tr>
</tbody>
</table>

You can figure out what the PULSOUT command's Duration argument has to be when you know how long you want the pulse to last. Just divide the PULSOUT Duration units into the time you want the pulse to last:

\[
\text{Duration Argument} = \frac{\text{Pulse Duration (ms)}}{\text{PULSOUT Duration units (µs)}}
\]

Propeller P8X32A Programming Example

Servo control with the Propeller chip is simplified by using a cog's counter modules. The code below causes a servo connected to I/O pin P0 to turn to and hold the 90 degree position. For more information about counter modules and PWM with the Propeller, see Chapter 7 in the Propeller Education Kit Labs: Fundamentals text, which is included as a PDF in the Propeller Tool IDE Help.

```{CenterParallaxServo.spin
For centering Parallax Continuous Rotation Servo
or holding Parallax Standard Servo at 90° position.
Sends a 1.5 ms pulse approx every 20 ms}
CON
_clkmode = xtal1 + pll16x    \ ' System clock + 80 MHz
_xinfreq = 5_000_000         \ ' Using 5 MHz external crystal oscillator
servoPin = 0                 \ ' Servo signal to this I/O pin-change if needed
PUB CenterServo | tInc, tc, tHa, t
ctra[30..26] := %00100       \ ' Configure Counter A to NCO
ctra[8..0] := servoPin
frqa := 1
dira[servoPin]~~
\ ' Set up cycle and high times
tInc := clkfreq/1_000_000
TC := tInc * 21_500
THa := tInc * 1500
T := cnt                     \ ' Mark counter time
repeat
phsa := -THa
T += Tc
waitcnt(T)
\ ' Repeat PWM signal
\ ' Set up the pulse
\ ' Calculate next cycle repeat
\ ' Wait for next cycle
```