CprE 388 Lab 4: Multi-View Applications

Objectives
e Show the TA that you know how to use Tab Bars Controllers, Navigation Controllers, and how to modally display
aview.

Submission

Lab evaluation form.
Complete a lab feedback form.

Note: If you are unable to complete the lab, please be ready to demonstrate it at the beginning of the next lab. iPods
are available for checkout from CSG.

Page 1 of 7

CprE 388 Lab 4: Multi-View Applications

Tab Bar Controller

Step 4 — Adding a New File to your project.

8ano

Tab Bars provide a simple way to easily switch between views.

Simulator - 4.0 | Debu... ~
Overview

[TabBar
= 4 @
Action Breakpoints Build and Run Tasks

Groups & Files

The following steps will help you create an app that switches between
three views using a Navigation Controller:

Get Info
Rename
Touch
Untouch
Delete

Ungroup
Group

Open With Finder

s
(4
g Reveal in Finder
B
[

11 File Name

New Group

New Target.

New Custom Executable...
New Build Phase >

Existing Files
Existing Frameworks...

<No name> 3

>

Step 1) Open Xcode.
Step 2) Click Create a new Xcode project ol

Step 3) Select Window-based Application. This is the bare bones GUI ;:5?:.2
template. Save the project as TabBar. :B‘

Step 4) Ctrl-click (right-click) the Classes folder and select Add-> New File. O —
Step 5) Select UlViewController Subclass and ensure the With XIB for user

interface option is checked.
Step 6) Name the new class FirstViewController.m and select Finish.

Step 7) Repeat steps 4-6 to add two more view controllers (and their = Stefj
New Fi
xib files) to your project. Name them SecondViewController and e
ThirdViewController. B oo ' v
A [Coeos ouc ciss —— ML h m
Step 8) Drag-and-drop your .xib files to the Resources folder to better o = = =N =
organize your code. Your project files should look like this: z*::::x
Gocan.Chas A TI‘;:;::::‘:‘::C’:::OIINmlxuu
Groups & Files Cand Cas ich X8 for user Interface
& TahBar :m;:,:m @ ol
o C_Iasses ::::m o M UIViewController subclass
rﬂ TabBarAppDelegate.h
[& TabBarAppDelegate.m e S T i
@ FirstViewController.h configured for this View Controller is also Included

@ FirstViewController.m
@ SecondViewController.h
@ SecondViewController.m

@ ThirdViewController.h
@ ThirdViewController.m
-] Other Sources
|| Resources
|_—j FirstviewController.xib
|_—j ThirdviewController.xib
|_—j SecondViewController.xib
[+ Mainwindow.xib
E TahBar-Info.plist

Right now, each View Controller has an identical blank view. Before we create the Tab Bar
Controller, you’ll want to open up each .xib file for your View Controllers and add a label or
something unique so that the three views are different. Follow these steps for using the
Interface Builder:

Step 9) Open FirstViewController.xib in the Interface Builder.

Step 10) (Optional) Click on the view and look at the Attributes Inspector. Change the
Bottom Bar from Unspecified to Tab Bar. While this is not necessary, it will help you place
objects on the view so that they are not covered by the Tab Bar.

Step 11) Drag a UlLabel from the Library Window to the view and change its text to "First
View" (or "Second View" or "Third View"). You may optionally do something else, as long
as you add something to the view that will distinguish it from the other two.

Step 12) Save and close the .xib.

Step 12) Repeat steps 9-11 for SecondViewController.xib and ThirdViewController.xib.

Step 10
0006 View Attributes
= [o | ¢ [0
¥ Simulated User Interface Elements
Orientation | Portrait '¢]
Status Bar | Gray :]
Top Bar | i %
¥ View
Mode |_Scale To Fill 3
Alpha —0 100 [3
Background | | Dafault) :]
Tag 0
Drawing M Opaque] Hidden

M Clear Context Before Drawing
] Clip Subviews

™ Autoresize Subviews

Stretching 000 2] 000 [3)
X v
100 [}] 100 3]
Width Height

Interaction E User Interaction Enabled

[Multiple Touch

Page 2 of 7

CprE 388 Lab 4: Multi-View Applications

Tab Bar Controllers (continued)

On this page, we’ll add code to the App Delegate in preparation for a
Tab Bar Controller that we’ll add onto the main window. The Tab Bar
will allow the user to switch between the three views. First, create an
IBOutlet:

Step 13) In TabBarAppDelegate.h, add an IBOutlet for the Tab Bar
Controller:

IBOutlet UITabBarController *tabBarController;

Step 14) In TabBarAppDelegate.m, add the following line of code at the
top of the application:didFinishLaunchingWithOptions: method to add
your Tab Bar onto the main window:

[window addSubview:tabBarController.view];

Step 15) Open MainWindow.xib in the Interface Builder.

Step 16) From the Library, drag-and-drop a UlTabBarController into the
Document Window (MainWindow.xib).

Step 17) By default, the Tab Bar will have two tabs. To add a third tab,
select the Tab Bar Controller from the Document Window and click the
+ to add another View Controller in the Attributes Inspector.

Next, you'll want to connect each tab with one of your three
ViewControllers:

Step 18) Expand the Tab Bar Controller in the Document Window.
Step 19) Select the first tab (or the first UIViewController in the
document window) and change its Class Identity to FirstViewController
in the Identity Inspector.

Step 20) Repeat step 17 for the other two tabs, changing their class
identity to SecondViewController and ThirdViewController.

Finally, complete the application:

Step 21) Ctrl-click (right click) on the Tab Bar Controller in the
Document Window. Drag a blue connection from New Referencing
Outlet to the Tab Bar App Delegate and select tabBarController.
Step 22) Run your project in the simulator and show the TA that you
can switch between your three views using tabs.

Step 16

8006 Library.

®© 20 @ @le @

Objects | Classes Media |

[[l Library \¢]

a Touch - Contr

View Controller - A controller that
supports the fundamental view-
management model in iPhone OS.

Navigation Controller - A controller
that manages navigation through a
hierarchy of views.

MainWindow.xib
=) 0
e e Vewode _impean__ sewerr
represent tab bar items. | Name Type
File's Owner UlApplication
@ First Respon... UlResponder
& Tab Bar App... TabBarAppDelegate

Window UWindow

Table View Controller - A controller
that manages a table view.

Image Picker Controller - A
controller that manages views for
choosing and taking pictures.

»

= 7}

Object - Provides a template for
objects and controllers not directly
available in Interface Builder.

Tab Bar Controller
UlTabBarController

® 00 MainWindow.xib =

EN =) O -

View Mode Inspector Search Field

Name Type

UlApplication
UIResponder
TabBarAppDelegate |
Window Uwindow

P Tab Bar Controller UlTabBarController [/

L | Title Class

N ltem 1 View Controller
o |1em 2 View Controller
. §item 3 View Controller

File's Owner
@ First Responder
11 Tab Bar App Delegate

ulated User Interface Elements

| Orientation |_Portrait [
| statusBar [Gray !
TopBar [Unspecified }

| |4

|

i Bottom Bar | Tab Bar e
A v view Controller
Title
Lavour | Wants Full Screen
Step 18-19
9 © O O First View Controller Identi
NOO MainWindow.xib a=y __7—
= H =+ | 0 | ¢ | @
= mJ o Q g4 v Class ldeniy
View Mode Inspector Search Field ¢
5| Class
Name Type e
File's Owner UlApplication ¥ Interface Builf
@ First Responder UlResponder d SecondviedNQufier h
& B iiltan ‘ThlrdViewContruller

11 Tab Bar App Delegate TabBarAppDelegate [{ i i
“ Objectip | UlimagePickerController

Window Uiwindow

UlNavigationController
¥ @ Tab Bar Controller UlTabBarController 1 Lock B
UlsplitViewController
£ UlTabBar
—— et | Label UlTabBarController
L) Selected First View Cont._JirstViewController
UlTableViewController
> L) St @PTeller... SecondViewController . Notes |
s UlVideoEditorController
» () Third View Controller (... ThirdViewController

UlViewController

Step 21

MainWindow.xib

@ OO .
g

W (= m O < }
‘. View Mode Inspector Search Field

&1 Name Type

) UlApplication
UlResponder
TabBarAppDelegate

File's Owner
@ First Responder
& Tab Bar App Delegate R‘

e Window UWindow View
& » fw Tab Bar Controller =) i |
¥ Outlets
d
e isplayController
view
3 ¥ Referencing Outlets
ik New Referencing Outlet

I | © TabBar.xcodeproj

Page 3 of 7

CprE 388 Lab 4: Multi-View Applications

Navigation Controller

Navigation Controllers allow you to create a stack of Views that the user can jump back and forth. The user starts at the
root view and subsequent views are pushed onto the stack. Only the root view needs a Navigation Controller;
subsequent views only require a Navigation Item. The following steps will help you create an app that switches between
three views using a Navigation Controller:

Step 1) Follow steps 1-7 from the Tab Bar Controller section but do not generate .xib files with the user interface
(Alternatively, you can reuse the old project and simply delete the three .xib files and undo any actions taken in the App
Delegate and MainWindow.xib)

Steps from previous section (do not create XIB files):
Step 1) Open Xcode.
Step 2) Click Create a new Xcode project
Step 3) Select Window-based Application. This is the bare bones GUI template. Save the project as Nav.
Step 4) Ctrl-click (right-click) the Classes folder and select Add-> New File.
Step 5) Select UlViewController Subclass and ensure the With XIB for user interface option is NOT checked.
Step 6) Name the new class FirstViewController.m and select Finish.
Step 7) Repeat steps 4-6 to add two more view controllers (and their .xib files) to your project. Name them
SecondViewController and ThirdViewController.

Step 2) In NavAppDelegate.h, import the header files for your view controllers.

Step 3) In NavAppDelegate.h, add IBOutlets for your three view controllers and a UINavigationController, and add two
IBAction methods for two buttons that you will create in later steps. Suggested instance names for IBOutlets and
method names for IBActions are:

IBOutlet UINavigationController *navigationController;
IBOutlet FirstViewController *firstVC;

IBOutlet SecondViewController *secondVC;

IBOutlet ThirdViewController *thirdVC;

- (IBAction)next;
- (IBAction)next2;

Step 4) In NavAppDelegate.m, add the view of your Navigation Controller to the main window by inserting the following
line of code at the top of the application:didFinishLaunchingWithOptions: method:

[window addSubview:navigationController.view];

*Make sure navigationController matches the instance name you defined for the IBOutlet in step 3.
Step 5) In your two IBAction methods, you need to call the pushViewController:animated: method on the navigation
controller in order to push a view onto the stack:

- (IBAction)next {
[navigationController pushViewController:secondVC animated:YES];

}
- (IBAction)next2 {

[navigationController pushViewController:thirdVC animated:YES];

}

Page 4 of 7

CprE 388 Lab 4: Multi-View Applications

Navigation Controllers (continued)

Step 6) Build your project so the IBOutlets and IBActions will appear in
the Interface Builder.

Next, we'll develop our interface using Interface Builder:

Step 7) Open MainWindow.xib.

Step 8) From the Library, drag-and-drop a UINavigationController into
the Document Window (MainWindow.xib).

Step 9) From the Library, drag-and-drop two UlViewControllers into the
Document Window (MainWindow.xib).

The root view controller becomes associated with the navigation
controller, and view controllers that are pushed onto the stack must be
associated with a navigation item.

Step 10) From the Library, drag-and-drop two UINavigationltems into the
Document Window (MainWindow.xib), one under each ViewController.

Note that the View Controller inside the Navigation Controller already has a

Navigation Item.

Step 11) Drag and drop three UlViews into each ViewController.

Step 12) Add two UlBarButtonltems, one onto the Root View Controller,
and another on the second View Controller. These will act as our next
buttons.

Step 13) Rename the Titles in the Navigation ltems to First, Second, and
Third.

Step 14) For each ViewController, change its Class Identity in the Identity
Inspector to match with its title (either FirstViewController,
SecondViewController, ThirdViewController).

Now it’s time to connect our Interface Builder objects with the IBOutlets
and IBActions we created earlier in the App Delegate.

Step 15) In the Document Window, Ctrl-click (right-click) the Nav App
Delegate. Connect the IBOutlets to their respective ViewControllers or
Navigation Controller. Connect the IBAction next to the selector event of
the first Bar Button, and connect next2 to the second bar button.

Step 16) Save and run your project in the simulator. Show the TA that you

are able to move back and forth between the three views.

Step 11 — Document Window after Step 11.

* Navigation Controller e]
&

s
MainWindow.xib

d View Controller
Type

File's Owner L
@ First Responder UlResponder
) Tab Bar App Delegate TabBarAppDelegate
__| Window UiWindow
@ Navigation Controller UlNavigationController
= Navigation Bar UlNavigationBar
¥ () View Controller (Root View Controller) UlViewController
.| View UiView
@ Navigation Item (Root View Controller) UINavigationitem
| ¥ () View Controller (Title) UlviewController
b= | View Ulview
& Navigation Item (Title) UlNavigationitem
¥ () View Controller (Title) UiviewController
. View UlView
@ Navigation item (Title) UlNavigationitem

Step 12

Navigation Controller

~
=

Step 13

PN

Navigation Controller

N

View Controller (Second)

= ey TR

S fx W2 Wal
- MainWindow.xib

FERVIEAY
= m

File's Owner
@ First Responder
| Tab Bar App Delegate
| Window
¥ &9 Navigation Controller
< Navigation Bar

¥ {_) First View Controller (First)

| View

UlApplication
UIResponder
TahBarAppDelegate
UIwindow
UlNavigationController
UlNavigationBar
FirstViewController
UlView
UlNavigationltem
UlBarButtonitem
SecondViewController
Ulview
UlNavigationltem
UlBarButtonltem
ThirdViewController
Ulview
UlINavigationltem

¥ 48 Navigation Item (First)
& Bar Button Item (ltem)
@ 7 () Second View Controller (Second
| View
¥ @& Navigation Item (Second)
& Bar Button ltem {ltem)
¥ () Third View Controller (Third)
. View
& Navigation Item (Third)

Page 5 of 7

CprE 388 Lab 4: Multi-View Applications

Modal View Controller
Reference:
http://developer.apple.com/iphone/library/featuredarticles/ViewControllerPGforiPhoneOS/ModalViewControllers/Mod

alViewControllers.html

Skim the Apple documentation for a background on Modal View Controllers. Alternatively, you can start a new project
and use the Utility App template. The template for a Utility App has code for modally displaying another
ViewController’s view.

Step 1) Reuse one of the previous projects and add functionality so that the user may modally display a view and return.
You will need to create two buttons and their corresponding IBAction methods: one on a view to show the new view and
one on the modal view to dismiss the modally displayed view.

Step 2) Show your app to the TA when you have completed it.

Page 6 of 7

http://developer.apple.com/iphone/library/featuredarticles/ViewControllerPGforiPhoneOS/ModalViewControllers/ModalViewControllers.html
http://developer.apple.com/iphone/library/featuredarticles/ViewControllerPGforiPhoneOS/ModalViewControllers/ModalViewControllers.html

CprE 388 Lab 4: Multi-View Applications

Delegates: Working with TextFields (Optional)

A common beginner’s problem is figuring out how to hide the keyboard after typing text into a UlTextField. The answer
is to make YourViewController a delegate for the UlTextField object. While handling an event, then you tell the
UlTextField object to resign its FirstResponder status, which hides the keyboard.

Step 1) Edit your viewController.h and viewController.m files by adding with the following:

YourViewController.h:

VN
@interface YourViewController : UIViewController <UITextFieldDelegate> {

IBOutlet UITextField *myText; //optional

/7.

@implementation YourViewController

[textField resignFirstResponder];

1
1
1
1
|
1
- (BOOL) textFieldShouldReturn (UITextField *)textField ({ '
1
1
// or [myText resignFirstResponder]; i

1

1

1

1

1

Note: A delegate is an assigned object that another object delegates work. In this case, the object doing the work adds
<UITextFieldDelegate> to the class definition to do the work for a UlTextField object. When you add a delegate
definition, your class is given a list of optional and mandatory methods to implement. For UlTextField, all methods are
optional to implement. Using delegates is a way to ensure that an object to which you delegate work has a standardized
set of methods that the delegating object can send messages.

A class can be the delegated object for multiple objects. For such cases, the delegate definitions are separated by
commas. For example: @interface YourViewController : UlViewController <UITextFieldDelegate, UlAlertViewDelegate>

If you right-click on <UITextFieldDelegate>, you can Jump to Definition and view all the methods defined in the delegate
protocol (or you may use Apple’s documentation).

Step 2) Open up YourViewController.xib in the Interface Builder.

Step 3) Add a UlTextField, resize, and position it on the view. You must right click and drag a connection from Delegate
to File’s Owner so that the instance of YourViewController acts as the UlTextField’s delegate. If you defined an IBOutlet,
you can connect the referencing outlet at this time as well.

Step 4) Save and test your project in the simulator. Show the TA that you can successfully hide the keyboard.

Page 7 of 7

