Fopme—pr—e—Fvir
Real- Trme Systems -

j-d ne W.s. L Section 8.5 Basic Priority-Ceiling Protocol 297

completes. If transitive blocking were to occur, J,, would inherit 7, (), and J; would inherit
a priority higher than 7, (¢) indirectly. This leads to a contradiction. Hence, the supposition
that the three jobs are transitively blocked must be false.

Computation of Blocking Time. Theorem 8.2 makes it easy for us to compute an
upper bound to the amount of time a job may be blocked due to resource conflicts. We call
this upper bound the blocking time (due to resource conflicts) of the job.

To illustrate how to do this computation, let us consider the system of jobs whose re-
source requirements are given by Figure 8-14. As always, the jobs are indexed in order of
decreasing priorities. We see that J; can be directed blocked by J4 for 1 unit of time. The
blocking time b;(rc) of J is clearly one. Although J, and J3 do not require the resource
Black, they can be priority-inheritance blocked by J, since J4 can inherit priority ;. Hence,
the blocking times b,(rc) and bs(rc) are also one.

Figure 8-15(a) shows a slightly more complicated example. Even for this small system,
it is error prone if we compute the blocking times of all jobs by inspection, as we did earlier.
The tables in Figure 8-15(b) give us a systematic way. There is a row for each job that can
be blocked. (In these tables, there is a row for every job except Js.) The tables list only the
nonzero entries; all the other entries are zero. Since jobs are not blocked by higher-priority
jobs, the entries at and below “*” in each column are zero.

The leftmost part is the direct-blocking table. It lists for each job the duration for which
it can be directly blocked by each of the lower-priority jobs. The entries in this table come
directly from the resource requirement graph of the system. Indeed, for the purpose of calcu-
lating the blocking times of the jobs, this table gives a complete specification of the resource
requirements of the jobs.

The middle part of Figure 8-15(b) is the priority-inheritance blocking table. It lists the
maximum duration for which each job can be priority-inheritance blocked by each of the
lower-priority jobs. For example, Jg can inherit priority 7r; of J; for 2 units of time when it
directly blocks J;. Hence, it can block all the other jobs for 2 units for time. In the table, we
show 2 units of inheritance blocking time of J, and J; by Js. However, because Jg can also
inherit 3 for 4 units of time, it can block J4 and Js for 4 units of time. This is the reason
that the entries in the fourth and fifth rows of column 6 are 4. In general, a systematic way
to get the entries in each column of this table from the entries in the corresponding column
of the direct-blocking table is as follows. The entry at column k and row i of the inheritance
blocking table is the maximum of all the entries in column k and rows 1,2, ...,i — 1 of the
direct-blocking table.

FIGURE 8-14 Example on duration of blocking.

Chapter 8 Resources and Resource Access Control

J
l %OX

Js 6
1
J3 (a)
5
J4
Js® Jg
Directly blocked by | Priority-inher blocked by | Priority-ceiling blocked by
jg j3 J4 j5 Jf, Jrg JT3 J_;, J:‘, J'ﬁ j_ﬂ_ J} J4 Jj .)’5
Ji 6 2
Jy | 5 k- O 2 e (&) 2
J3 * 4 ¥ 5 2 st 2
.]4 * * 4 2 4
Js g * 4 *

(b)

FIGURE 8-15 Example illustrating the computation of blocking times.

The rightmost table in Figure 8—15(b) is the avoidance (priority-ceiling) blocking table.
It lists the maximum duration for which each job can be avoidance blocked by each lower-
priority job. Again, let us focus on column 6. When Ji holds resource X (whose priority
ceiling is the highest in the system), it avoidance blocks all the jobs which require any re-
source. Similarly, when it holds Z, it avoidance blocks Jy. Therefore, except for the entry in
row 5. all entries in column 6 of the avoidance blocking table are the same as the correspond-
ing entries in column 6 of the inheritance blocking table. Js5 does not require any resource
and is never directly or avoidance blocked. In general, when the priorities of all the jobs are
distinct, the entries in the avoidance blocking rable are equal to corresponding entries in the
priority-inheritance blocking table, except for jobs which do not require any resources. Jobs
which do not require any resource are never avoidance blocked, just as they are never directly
blocked.

The blocking time b; (rc) of each job J; is equal to the maximum value of all the entries
in the ith row of the three tables. From Figure 8-15(b), we have bi(rc) is equal to 6, 6, 5, 4,
4,and 0 fori = 1,2, ..., 6, respectively

For this example, every entry in the avoidance blocking table is either equal to or smaller
than the corresponding entries in the direct blocking or inheritance blocking tables. Since We

B:5.5

T — L T T TR

8.5.5

Section8.5 Basic Priority-Ceiling Protocol 299

71, and this job requires a resource V for 9 units of time. Then the blocking time of Ji is
10, the amount of time J1 holds the resource X and priority-ceiling blocks J. Similarly, the
blocking time of J; is 9, the duration for which it is priority-ceiling blocked by J. In this
case, we need the avoidance blocking table to give us these blocking times.

computes the blocking time bi(rc) of all the jobs from the resource requirement graph of the
System. For the sake of efficiency, you may want to first identify for each job J; the subset of
all the jobs that may block the job. This subset is called the blocking set of J;. (In our simple
example, J5 is not included in the blocking set of any other job, since it cannot block any job.
The blocking set of J; includes all the lower-priority jobs other than Js.)

Fixed-Priority Scheduling and Priority-Ceiling Protocol

of resource contentions on the schedulability of the tasks can be taken care of by including
the blocking time by(rc) in the schedulability test of the system,

For example, suppose that the jobs in Figure 8-14 belong to four periodic tasks, The
tasks are 7) = (¢, 2, 0.8; [Black; 0.8]), T = (¢, 2.2, 0.4), T3 = (s, 5,0.2; [Shaded; 0.2]), and
Ty = (10, 1.0; [Black; 1.0]), where ¢ is a small positive number. For all i, Jj in Figure 8-14 is
ajob in 7;. Figure 8~16 shows the initial segment of the schedule of the tasks according to the

time 2.2 + ¢, A schedulability test can predict this miss. The time-demand function of L is
equalto 2.2 (i.e., 0.8 +0.4 + 1.0} in (0, 2.0 + £] when the blocking time ba(rc) = 1.0 of T,is
included and becomes 3.0 at 2.0+« (i.e., the beginning of the second period of T}). Obviously,

schedulable by inc uding the blocking time &, (rc) computed above in the schedulability test.

To summarize this section, we recall that two factors contribute to the time-demand
function of each task in addition to the execution times of ts Jjobs and execution times of
equal and higher-priority jobs, They are blocking time and context-switching time. When the
system is scheduled on a fixed-priority basis and uses the priority-ceiling protocol, we can
Compute the blocking time b, (rc) of each task 7; due to jts resource conflicts with other tasks
in the way described above, After we have thus obtained bi(re), we include this blocking
factor with the other types of blocking times (e.g., due to nonpreemptivity of lower-priority

‘Exercises 327

'EXERCISES

‘8. A system contains five jobs. There are three resources X, Y, and Z. The resource requirements of
the jobs are listed below.

I X 2]
I none
Ja: [Y; 1]

Jao [X;3(Z51])
i [¥;4(zZ;2])

The priority J; is higher than the priority of Jj fori < j. What are the maximum blocking
times of the jobs under the nonpreemptable critical-section protocol and under the priority-ceiling
protocol?

8.2 A system contains the following four periodic tasks. The tasks are scheduled by the rate-
monotonic algorithm and the priority-ceiling protocol.

Ti'=(3,075 5 =09
;=515 b =075
3 =

T3 = (6,0.6) by =1.0
T, = (10, 1)

»

b; is the blocking time of T;. Are the tasks schedulable? Explain your answer,

Consider a fixed-priority system in which there are five tasks 7, fori = 1, 2, 3, 4, and 5, with
decreasing priorities. There are two resources X and Y. The critical sections of Ty, T», Ty, and
Ts are [Y; 3], [X; 4], [Y: 5 [X;2]], and [X; 10], respectively. (Note that 73 does not require any
resource.) Find the blocking times b; (rc) of the tasks.

8.4 A fixed-priority System contains four tasks T;, fori = 1,2, 3, 4, and 5, with decreasing priorities
and uses the ceiling-priority protocol to control resource access. There are three resources X, ¥,
and Z; each has 1 unit. The critical sections of the tasks are [X;4),1Y;6],(2; 5l,and [X;3[Y;2
[Z;1]]], respectively. Suppose that T may self-suspend once, and by(ss) is 1. The other tasks
never self-suspend. What are the blocking times of the tasks?

8.5 Sections 8.6.1 and 8.6.2 give two different implementations (and two different names) of the
ceiling-priority protocol.

(a) Discuss the pros and cons of the implementations.

(b) The definitions of the stack-based, priority-ceiling protocol and ceiling-priority protocol do

not say whether jobs are allowed to self-suspend. Do protocols still limit the duration of
blocking if jobs may self-suspend? If yes, give an intuitive argument to support your answer,
If no, give an illustrative example.
Oftentimes, jobs of equal priority are scheduled on the round-robin basis. Modify the defini-
tion of priority ceilings of resources and the scheduling rule of the ceiling-priority protocol
to make the protocol work for such Jjobs. (Hint: Consider restricting the priorities of all jobs
to even integers. Define the priority ceiling of each resource to be the highest of the priorities
of all jobs that require the resource minus one. In other words, the ceiling priorities of all
resources are odd integers.)

(c

~—

8.6 A fixed-priority system contains five tasks. There are two kinds of resources X and ¥ . The re-
source X has 3 units and ¥ has 2 units. The resource requirements of the tasks are as follows:

