
CprE 458/558 G. Manimaran (ISU)

CprE 458/558: Real-Time Systems

Lecture 17
Fault-tolerant design techniques

2CprE 458/558 G. Manimaran (ISU)

Fault Tolerant Strategies

Fault tolerance in computer system is achieved through
redundancy in hardware, software, information, and/or
computations. Such redundancy can be implemented in
static, dynamic, or hybrid configurations.
Fault tolerance can be achieved by many techniques:

Fault masking is any process that prevents faults in a system
from introducing errors. Example: Error correcting memories and
majority voting.
Reconfiguration is the process of eliminating faulty component
from a system and restoring the system to some operational state.

3CprE 458/558 G. Manimaran (ISU)

Reconfiguration Approach

Fault detection is the process of recognizing that a fault
has occurred. Fault detection is often required before any
recovery procedure can be initiated.
Fault location is the process of determining where a fault
has occurred so that an appropriate recovery can be
initiated.
Fault containment is the process of isolating a fault and
preventing the effects of that fault from propagating
throughout the system.
Fault recovery is the process of remaining operational or
regaining operational status via reconfiguration even in the
presence of faults.

4CprE 458/558 G. Manimaran (ISU)

The Concept of Redundancy

Redundancy is simply the addition of information,
resources, or time beyond what is needed for normal
system operation.
Hardware redundancy is the addition of extra
hardware, usually for the purpose either detecting or
tolerating faults.
Software redundancy is the addition of extra software,
beyond what is needed to perform a given function, to
detect and possibly tolerate faults.
Information redundancy is the addition of extra
information beyond that required to implement a given
function; for example, error detection codes.

5CprE 458/558 G. Manimaran (ISU)

The Concept of Redundancy (Cont’d)

Time redundancy uses additional time to perform the
functions of a system such that fault detection and often
fault tolerance can be achieved. Transient faults are
tolerated by this.

The use of redundancy can provide additional capabilities
within a system. But, redundancy can have very important
impact on a system's performance, size, weight, power
consumption, and reliability.

6CprE 458/558 G. Manimaran (ISU)

Hardware Redundancy

Passive techniques use the concept of fault masking.
These techniques are designed to achieve fault tolerance
without requiring any action on the part of the system.
Relies on voting mechanisms.
Active techniques achieve fault tolerance by detecting
the existence of faults and performing some action to
remove the faulty hardware from the system. That is,
active techniques use fault detection, fault location, and
fault recovery in an attempt to achieve fault tolerance.

7CprE 458/558 G. Manimaran (ISU)

Hardware Redundancy (Cont’d)

Hybrid techniques combine the attractive features of
both the passive
and active approaches.

Fault masking is used in hybrid systems to prevent erroneous
results from being generated.
Fault detection, location, and recovery are also used to improve
fault tolerance by removing faulty hardware and replacing it with
spares.

8CprE 458/558 G. Manimaran (ISU)

Hardware Redundancy - A Taxonomy

Passive

Active

Hybrid

Triple Modular Redundancy

Duplication with Comparison

Standby Sparing

N-Modular Redundancy

Pair-and-a-Spair

Watchdog timer

NMR with Spares

Slef-Purging Redundancy

Sift-Out Redundancy

Triple-Duplex Architecture

Hardware
Redundancy

Hot standby

Cold standby

Techniques

Techniques

Techniques

9CprE 458/558 G. Manimaran (ISU)

Triple Modular Redundancy (TMR)

MODULE 1

MODULE 2

MODULE 3

VOTER

Input 3

Input 2

Input 1

Output

10CprE 458/558 G. Manimaran (ISU)

Software Redundancy - to Detect
Software Faults

There are two popular approaches: N-Version
Programming (NVP) and Recovery Blocks (RB).

NVP is a forward recovery scheme - it masks faults.
NVP: multiple versions of the same task is executed
concurrently.
NVP relies on voting.

RB is a backward error recovery scheme.
RB: the versions of a task are executed serially.
RB relies on acceptance test.

11CprE 458/558 G. Manimaran (ISU)

N-Version Programming (NVP)

NVP is based on the principle of design diversity, that is coding a
software module by different teams of programmers, to have multiple
versions.

Diversity can also be introduced by employing different algorithms for
obtaining the same solution or by choosing different programming
languages.

NVP can tolerate both hardware and software faults.

Correlated faults are not tolerated by the NVP.

In NVP, deciding the number of versions required to ensure acceptable
levels of software reliability is an important design consideration.

12CprE 458/558 G. Manimaran (ISU)

N-Version Programming (Cont’d)

VERSION 1

VERSION 2 VOTERInput Output

VERSION 3

13CprE 458/558 G. Manimaran (ISU)

Recovery Blocks (RB)

RB uses multiple alternates (backups) to perform the same
function; one module (task) is primary and the others are
secondary.

The primary task executes first. When the primary task
completes execution, its outcome is checked by an
acceptance test.

If the output is not acceptable, a secondary task executes
after undoing the effects of primary (i.e., rolling back to
the state at which primary was invoked) until either an
acceptable output is obtained or the alternates are
exhausted.

14CprE 458/558 G. Manimaran (ISU)

Recovery Blocks (Cont’d)

ACCEPTANCE TEST

ACCEPTANCE TEST

ACCEPTANCE TEST

Output

Output

Failure

Failure

Success

Success

Time

VERSION N Output
Failure

VERSION 2

VERSION 1

.

.

.

15CprE 458/558 G. Manimaran (ISU)

Recovery Blocks (Cont’d)

The acceptance tests are usually sanity checks; these
consist of making sure that the output is within a certain
acceptable range or that the output does not change at
more than the allowed maximum rate.

Selecting the range for acceptance test is crucial. If the
allowed ranges are too small, the acceptance tests may
label correct outputs as bad. If they are too large, the
probability that incorrect outputs will be accepted is more.

RB can tolerate software faults because the alternates are
usually implemented with different approaches; RB is also
known as Primary-Backup approach.

